{"title":"Optimal control of transverse vibration of a moving string with time-varying lengths","authors":"Bing Sun","doi":"10.3934/mcrf.2021042","DOIUrl":null,"url":null,"abstract":"In this article, we are concerned with optimal control for the transverse vibration of a moving string with time-varying lengths. In the fixed final time horizon case, the Pontryagin maximum principle is established for the investigational system with a moving boundary, owing to the Dubovitskii and Milyutin functional analytical approach. A remark then follows for discussing the utilization of obtained necessary optimality condition.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2021042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we are concerned with optimal control for the transverse vibration of a moving string with time-varying lengths. In the fixed final time horizon case, the Pontryagin maximum principle is established for the investigational system with a moving boundary, owing to the Dubovitskii and Milyutin functional analytical approach. A remark then follows for discussing the utilization of obtained necessary optimality condition.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.