Improving the matching precision of SIFT

Zhongwei Tang, P. Monasse, J. Morel
{"title":"Improving the matching precision of SIFT","authors":"Zhongwei Tang, P. Monasse, J. Morel","doi":"10.1109/ICIP.2014.7026164","DOIUrl":null,"url":null,"abstract":"We evaluate and improve the matching precision of the SIFT method [1], defined as the root mean square error (RMSE) under a ground truth geometric transform. We first argue that the matching precision reflects to some extent the average relative localization precision between two images. For scale invariant feature detectors like SIFT, we show that the matching precision decreases with the scale of the keypoints, and that this is caused by the scale space sub-sampling in SIFT. We verify that canceling this sub-sampling therefore improves drastically the matching precision. Yet, in case of scale change, this improvement is marginal due to the coarse scale quantization in the scale space. A more sophisticated method is therefore also proposed to improve the matching precision even in case of scale change. This incremented precision is a key ingredient in many important image processing tasks requiring the best precision, such as registration, stitching, and camera calibration.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We evaluate and improve the matching precision of the SIFT method [1], defined as the root mean square error (RMSE) under a ground truth geometric transform. We first argue that the matching precision reflects to some extent the average relative localization precision between two images. For scale invariant feature detectors like SIFT, we show that the matching precision decreases with the scale of the keypoints, and that this is caused by the scale space sub-sampling in SIFT. We verify that canceling this sub-sampling therefore improves drastically the matching precision. Yet, in case of scale change, this improvement is marginal due to the coarse scale quantization in the scale space. A more sophisticated method is therefore also proposed to improve the matching precision even in case of scale change. This incremented precision is a key ingredient in many important image processing tasks requiring the best precision, such as registration, stitching, and camera calibration.
提高SIFT的匹配精度
我们评估并改进了SIFT方法[1]的匹配精度,[1]定义为在真实几何变换下的均方根误差(RMSE)。我们首先认为匹配精度在一定程度上反映了两幅图像之间的平均相对定位精度。对于像SIFT这样的尺度不变特征检测器,我们发现匹配精度随着关键点的尺度而降低,这是由SIFT中的尺度空间子采样引起的。我们验证了取消这个子采样可以大大提高匹配精度。然而,在尺度变化的情况下,由于尺度空间中的粗糙尺度量化,这种改进是微不足道的。因此,提出了一种更复杂的方法,即使在尺度变化的情况下也能提高匹配精度。这种增加的精度是许多需要最佳精度的重要图像处理任务的关键因素,例如配准,拼接和相机校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信