SAT Based Exact Synthesis using DAG Topology Families

Winston Haaswijk, A. Mishchenko, Mathias Soeken, G. Micheli
{"title":"SAT Based Exact Synthesis using DAG Topology Families","authors":"Winston Haaswijk, A. Mishchenko, Mathias Soeken, G. Micheli","doi":"10.1145/3195970.3196111","DOIUrl":null,"url":null,"abstract":"SAT based exact synthesis is a powerful technique, with applications in logic optimization, technology mapping, and synthesis for emerging technologies. However, its runtime behavior can be unpredictable and slow. In this paper, we propose to add a new type of constraint based on families of DAG topologies. Such families restrict the search space considerably and let us partition the synthesis problem in a natural way. Our approach shows significant reductions in runtime as compared to state-of-the-art implementations, by up to 63.43%. Moreover, our implementation has significantly fewer timeouts compared to baseline and reference implementations, and reduces this number by up to 61%. In fact, our topology based implementation dominates the others with respect to the number of solved instances: given a runtime bound, it solves at least as many instances as any other implementation.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"13 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

SAT based exact synthesis is a powerful technique, with applications in logic optimization, technology mapping, and synthesis for emerging technologies. However, its runtime behavior can be unpredictable and slow. In this paper, we propose to add a new type of constraint based on families of DAG topologies. Such families restrict the search space considerably and let us partition the synthesis problem in a natural way. Our approach shows significant reductions in runtime as compared to state-of-the-art implementations, by up to 63.43%. Moreover, our implementation has significantly fewer timeouts compared to baseline and reference implementations, and reduces this number by up to 61%. In fact, our topology based implementation dominates the others with respect to the number of solved instances: given a runtime bound, it solves at least as many instances as any other implementation.
基于DAG拓扑族的SAT精确综合
基于SAT的精确合成是一种强大的技术,在逻辑优化、技术映射和新兴技术合成等方面都有应用。然而,它的运行时行为可能是不可预测的和缓慢的。在本文中,我们提出了一种新的基于DAG拓扑族的约束类型。这样的族极大地限制了搜索空间,使我们能够以一种自然的方式划分合成问题。与最先进的实现相比,我们的方法显着减少了运行时间,最多减少了63.43%。此外,与基准和参考实现相比,我们的实现具有更少的超时,并将此数字减少了61%。事实上,我们基于拓扑的实现在解决实例的数量方面优于其他实现:给定运行时边界,它解决的实例至少与任何其他实现一样多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信