Uniformity Testing in the Shuffle Model: Simpler, Better, Faster

C. Canonne, Hongyi Lyu
{"title":"Uniformity Testing in the Shuffle Model: Simpler, Better, Faster","authors":"C. Canonne, Hongyi Lyu","doi":"10.1137/1.9781611977066.13","DOIUrl":null,"url":null,"abstract":"Uniformity testing, or testing whether independent observations are uniformly distributed, is the prototypical question in distribution testing. Over the past years, a line of work has been focusing on uniformity testing under privacy constraints on the data, and obtained private and data-efficient algorithms under various privacy models such as central differential privacy (DP), local privacy (LDP), pan-privacy, and, very recently, the shuffle model of differential privacy. In this work, we considerably simplify the analysis of the known uniformity testing algorithm in the shuffle model, and, using a recent result on “privacy amplification via shuffling,” provide an alternative algorithm attaining the same guarantees with an elementary and streamlined argument.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"71 1","pages":"182-202"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977066.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Uniformity testing, or testing whether independent observations are uniformly distributed, is the prototypical question in distribution testing. Over the past years, a line of work has been focusing on uniformity testing under privacy constraints on the data, and obtained private and data-efficient algorithms under various privacy models such as central differential privacy (DP), local privacy (LDP), pan-privacy, and, very recently, the shuffle model of differential privacy. In this work, we considerably simplify the analysis of the known uniformity testing algorithm in the shuffle model, and, using a recent result on “privacy amplification via shuffling,” provide an alternative algorithm attaining the same guarantees with an elementary and streamlined argument.
Shuffle模型中的一致性测试:更简单、更好、更快
均匀性检验,即检验独立观测值是否均匀分布,是分布检验中的典型问题。在过去的几年里,人们一直致力于数据隐私约束下的一致性测试,并在各种隐私模型下获得了私有和数据高效的算法,如中心差分隐私(DP)、局部隐私(LDP)、泛隐私(pan-privacy)以及最近的差分隐私shuffle模型。在这项工作中,我们大大简化了对洗牌模型中已知一致性测试算法的分析,并使用最近关于“通过洗牌放大隐私”的结果,提供了一种替代算法,通过基本和精简的论证获得相同的保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信