O. Bondar, M. Lisovenko, K. Belovol, E. Coy, K. Załȩski, P. Żukowski, B. Postolnyi, P. Konarski
{"title":"Structure and elemental composition of multilayered nanocomposite TiN/ZrN coatings before and after annealing in air","authors":"O. Bondar, M. Lisovenko, K. Belovol, E. Coy, K. Załȩski, P. Żukowski, B. Postolnyi, P. Konarski","doi":"10.1109/NAP.2017.8190365","DOIUrl":null,"url":null,"abstract":"Multilayered TiN/ZrN coatings were deposited using sequential vacuum-arc deposition of Ti and Zr targets in a nitrogen atmosphere. Studies of film's properties were done using various modern methods of analysis, such as XRD, STEM, HRTEM, SIMS. Several samples were annealed in air at the temperature 700°C. All deposited samples were highly polycrystalline with large 7–17 nm crystals. The crystalline planes were ordinated and demonstrated an excellent co-ordinated growth. Concentration of Zr increased after annealing, while Ti and N concentrations decreased due to annealing. Annealing led to 5–10% decreasing of the size of crystallites. Calculated lattice parameters appeared to be a little bit larger in comparison with standard values (1% larger for ZrN and 0.6% larger for TiN) both for as-deposited and annealed samples due to compressive stresses.","PeriodicalId":6516,"journal":{"name":"2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP)","volume":"115 1","pages":"02NTF04-1-02NTF04-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP.2017.8190365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multilayered TiN/ZrN coatings were deposited using sequential vacuum-arc deposition of Ti and Zr targets in a nitrogen atmosphere. Studies of film's properties were done using various modern methods of analysis, such as XRD, STEM, HRTEM, SIMS. Several samples were annealed in air at the temperature 700°C. All deposited samples were highly polycrystalline with large 7–17 nm crystals. The crystalline planes were ordinated and demonstrated an excellent co-ordinated growth. Concentration of Zr increased after annealing, while Ti and N concentrations decreased due to annealing. Annealing led to 5–10% decreasing of the size of crystallites. Calculated lattice parameters appeared to be a little bit larger in comparison with standard values (1% larger for ZrN and 0.6% larger for TiN) both for as-deposited and annealed samples due to compressive stresses.