A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus

IF 0.9 3区 数学 Q2 MATHEMATICS
Ju-Feng Wu
{"title":"A pairing on the cuspidal eigenvariety for $\\text{GSp}_{2g}$ and the ramification locus","authors":"Ju-Feng Wu","doi":"10.4171/dm/826","DOIUrl":null,"url":null,"abstract":"In the present article, we study the overconvergent cohomology groups related to $\\text{GSp}_{2g}$. We construct a pairing on the cohomology groups. On the other hand, by considering the parabolic cohomology groups and applying the strategy in [JN19], we constructed the cuspidal eigenvariety for $\\text{GSp}_{2g}$. The pairing on the cohomology groups then induces a pairing on some coherent sheaves of the cuspidal eigenvariety. As an application, we follow the strategy in [Bel10, Chapter VI] to study the ramification locus of the cuspidal eigenvariety for $\\text{GSp}_{4}$ over the corresponding weight space.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"31 12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/826","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In the present article, we study the overconvergent cohomology groups related to $\text{GSp}_{2g}$. We construct a pairing on the cohomology groups. On the other hand, by considering the parabolic cohomology groups and applying the strategy in [JN19], we constructed the cuspidal eigenvariety for $\text{GSp}_{2g}$. The pairing on the cohomology groups then induces a pairing on some coherent sheaves of the cuspidal eigenvariety. As an application, we follow the strategy in [Bel10, Chapter VI] to study the ramification locus of the cuspidal eigenvariety for $\text{GSp}_{4}$ over the corresponding weight space.
$\text{GSp}_{2g}$与分支轨迹的尾数特征变异配对
在本文中,我们研究了$\text{GSp}_{2g}$相关的超收敛上同群。我们在上同调群上构造了一个对。另一方面,通过考虑抛物型上同群并应用[JN19]中的策略,我们构造了$\text{GSp}_{2g}$的倒态特征簇。在上同调群上的配对,进而推导出在倒轴特征变异的一些相干束上的配对。作为一个应用,我们遵循[Bel10, Chapter VI]中的策略,研究$\text{GSp}_{4}$在相应权空间上的倒角特征变分轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信