Bifurcation Analysis of Improved Traffic Flow Model On Curved Road

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
{"title":"Bifurcation Analysis of Improved Traffic Flow Model On Curved Road","authors":"","doi":"10.1115/1.4062267","DOIUrl":null,"url":null,"abstract":"\n Nonlinear analysis of complex traffic flow systems can provide a deep understanding of the causes of various traffic phenomena and reduce traffic congestion, and bifurcation analysis is a powerful method for it. In this paper, based on the improved Aw-Rascle model, a new macroscopic traffic flow model is proposed, which takes into account the road factors and driver psychological factor in the curve environment which can effectively simulate many realistic traffic phenomena on curves. The macroscopic traffic flow model on curved road is analyzed by bifurcation, firstly, it is transformed into a nonlinear dynamical system, then its stability conditions and the existence conditions of bifurcations are derived, and the changes of trajectories near the equilibrium points are described by phase plane. From an equilibrium point, various bifurcation structures describing the nonlinear traffic flow are obtained. In this paper, the influence of different bifurcations on traffic flow is analyzed, and the causes of special traffic phenomena such as stop-and-go and traffic clustering are described using Hopf bifurcation as the starting point of density temporal evolution. The derivation and simulation show that both road factors and driver psychological factor affect the stability of traffic flow on curves, and the study of bifurcation in the curved traffic flow model provides decision support for traffic management.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"14 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062267","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear analysis of complex traffic flow systems can provide a deep understanding of the causes of various traffic phenomena and reduce traffic congestion, and bifurcation analysis is a powerful method for it. In this paper, based on the improved Aw-Rascle model, a new macroscopic traffic flow model is proposed, which takes into account the road factors and driver psychological factor in the curve environment which can effectively simulate many realistic traffic phenomena on curves. The macroscopic traffic flow model on curved road is analyzed by bifurcation, firstly, it is transformed into a nonlinear dynamical system, then its stability conditions and the existence conditions of bifurcations are derived, and the changes of trajectories near the equilibrium points are described by phase plane. From an equilibrium point, various bifurcation structures describing the nonlinear traffic flow are obtained. In this paper, the influence of different bifurcations on traffic flow is analyzed, and the causes of special traffic phenomena such as stop-and-go and traffic clustering are described using Hopf bifurcation as the starting point of density temporal evolution. The derivation and simulation show that both road factors and driver psychological factor affect the stability of traffic flow on curves, and the study of bifurcation in the curved traffic flow model provides decision support for traffic management.
弯道交通流改进模型的分岔分析
复杂交通流系统的非线性分析可以深入了解各种交通现象的成因,减少交通拥堵,而分岔分析是解决这一问题的有力方法。本文在改进的Aw-Rascle模型的基础上,提出了一种考虑弯道环境中道路因素和驾驶员心理因素的宏观交通流模型,可以有效地模拟弯道上的许多现实交通现象。对弯曲道路宏观交通流模型进行了分岔分析,首先将其转化为非线性动力系统,推导了其稳定性条件和分岔存在条件,并用相平面描述了平衡点附近的轨迹变化。从平衡点出发,得到描述非线性交通流的各种分岔结构。本文分析了不同分岔对交通流的影响,并以Hopf分岔作为密度时间演化的起点,描述了走走停停、交通聚类等特殊交通现象产生的原因。推导和仿真结果表明,道路因素和驾驶员心理因素都会影响弯道交通流的稳定性,研究弯道交通流模型的分岔问题为交通管理提供决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
10.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信