Thickness optimization of AlN thin films deposited by RF Magnetron Sputtering

S. Uzgur, D. Hutson, K. Kirk
{"title":"Thickness optimization of AlN thin films deposited by RF Magnetron Sputtering","authors":"S. Uzgur, D. Hutson, K. Kirk","doi":"10.1109/ISAF.2012.6297867","DOIUrl":null,"url":null,"abstract":"Aluminium nitride (AlN) which has a wurtzite crystal structure is highly suitable material for applications in a wide range field of ultrasonic transducers, non-destructive testing and MEMS-Micro-Electro-Mechanical Systems because of AlN's good piezoelectric properties. We are interested in investigation of the suitability of piezoelectric AlN for thin film based devices for MEMS applications. Since the good functionality of piezoelectric devices is highly dependent on the quality of the thin film, our first aim is to improve the quality of the deposited film and eventually to build an optimised deposition parameters by using design of experiments method (DoE). Thin films produced by RF Magnetron Sputtering were characterized to analyze its crystallographic structure by using X-ray diffraction, Scanning Electron Microscope (SEM), and Spectrophotometer. The structural and mechanical characterization results showed that AlN thin film has highly (002) c-axis orientation. The optical characterization supported the thickness of the films were in the range of micron. The optimization process pointed out that the input parameters did not have a significant effect on the output parameters.","PeriodicalId":20497,"journal":{"name":"Proceedings of ISAF-ECAPD-PFM 2012","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ISAF-ECAPD-PFM 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2012.6297867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aluminium nitride (AlN) which has a wurtzite crystal structure is highly suitable material for applications in a wide range field of ultrasonic transducers, non-destructive testing and MEMS-Micro-Electro-Mechanical Systems because of AlN's good piezoelectric properties. We are interested in investigation of the suitability of piezoelectric AlN for thin film based devices for MEMS applications. Since the good functionality of piezoelectric devices is highly dependent on the quality of the thin film, our first aim is to improve the quality of the deposited film and eventually to build an optimised deposition parameters by using design of experiments method (DoE). Thin films produced by RF Magnetron Sputtering were characterized to analyze its crystallographic structure by using X-ray diffraction, Scanning Electron Microscope (SEM), and Spectrophotometer. The structural and mechanical characterization results showed that AlN thin film has highly (002) c-axis orientation. The optical characterization supported the thickness of the films were in the range of micron. The optimization process pointed out that the input parameters did not have a significant effect on the output parameters.
射频磁控溅射制备AlN薄膜厚度优化
氮化铝(AlN)具有纤锌矿晶体结构,由于其良好的压电性能,非常适合应用于超声波换能器、无损检测和mems微机电系统等广泛领域。我们有兴趣研究压电AlN在MEMS薄膜器件中的适用性。由于压电器件的良好功能高度依赖于薄膜的质量,因此我们的首要目标是提高沉积膜的质量,并最终通过实验设计方法(DoE)建立优化的沉积参数。采用x射线衍射、扫描电子显微镜(SEM)和分光光度计对射频磁控溅射制备的薄膜进行表征,分析其晶体结构。结构和力学表征结果表明,AlN薄膜具有高度的(002)c轴取向。光学表征支持薄膜厚度在微米范围内。优化过程指出,输入参数对输出参数没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信