There is no polynomial deterministic space simulation of probabilistic space with a two-way random-tape generator

Q4 Mathematics
Marek Karpinski , Rutger Verbeek
{"title":"There is no polynomial deterministic space simulation of probabilistic space with a two-way random-tape generator","authors":"Marek Karpinski ,&nbsp;Rutger Verbeek","doi":"10.1016/S0019-9958(85)80032-2","DOIUrl":null,"url":null,"abstract":"<div><p>We prove there is no polynomial deterministic space simulation for two-way random-tape probabilistic space (Pr<sub>2</sub>SPACE) (as defined in Borodin, A., Cook, S., and Pippenger, N. (1983) <em>Inform. Control</em> <strong>58</strong> 113–136) for all functions <em>f</em>: ℕ → ℕ and all <em>α</em> ∈ ℕ, Pr<sub>2</sub>SPACE(<em>f</em>(<em>n</em>))DSPACE(<em>f</em>(<em>n</em>)<sup><em>α</em></sup>). This is the answer to the problem formulated in op cit., whether the deterministic squared-space simulation (for recognizers and transducers) generalizes to the two-way random-tape machine model. We prove, in fact, a stronger result saying that even space-bounded Las Vegas two-way random-tape algorithms (yielding always the correct answer and terminating with probability 1) are exponentially more efficient than the deterministic ones.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"67 1","pages":"Pages 158-162"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80032-2","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995885800322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

We prove there is no polynomial deterministic space simulation for two-way random-tape probabilistic space (Pr2SPACE) (as defined in Borodin, A., Cook, S., and Pippenger, N. (1983) Inform. Control 58 113–136) for all functions f: ℕ → ℕ and all α ∈ ℕ, Pr2SPACE(f(n))DSPACE(f(n)α). This is the answer to the problem formulated in op cit., whether the deterministic squared-space simulation (for recognizers and transducers) generalizes to the two-way random-tape machine model. We prove, in fact, a stronger result saying that even space-bounded Las Vegas two-way random-tape algorithms (yielding always the correct answer and terminating with probability 1) are exponentially more efficient than the deterministic ones.

用双向随机磁带发生器进行概率空间的多项式确定性空间模拟是不存在的
我们证明双向随机磁带概率空间(Pr2SPACE)(如Borodin, A., Cook, S.和Pippenger, N. (1983) Inform中定义的)不存在多项式确定性空间模拟。对于所有函数f: _1→_1和所有α∈_1,Pr2SPACE(f(n))DSPACE(f(n)α)。这就是在op - cit中提出的问题的答案,即确定性的平方空间模拟(用于识别器和换能器)是否可以推广到双向随机磁带机模型。事实上,我们证明了一个更强的结果,即即使是有空间限制的拉斯维加斯双向随机磁带算法(总是产生正确答案并以概率1结束)也比确定性算法的效率要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信