Solving Systems of Linear Equations Based on Approximation Solution Projection Analysis

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
J. Lavendels
{"title":"Solving Systems of Linear Equations Based on Approximation Solution Projection Analysis","authors":"J. Lavendels","doi":"10.2478/acss-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract The paper considers an iterative method for solving systems of linear equations (SLE), which applies multiple displacement of the approximation solution point in the direction of the final solution, simultaneously reducing the entire residual of the system of equations. The method reduces the requirements for the matrix of SLE. The following SLE property is used: the point is located farther from the system solution result compared to the point projection onto the equation. Developing the approach, the main emphasis is made on reduction of requirements towards the matrix of the system of equations, allowing for higher volume of calculations.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"35 1","pages":"54 - 59"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The paper considers an iterative method for solving systems of linear equations (SLE), which applies multiple displacement of the approximation solution point in the direction of the final solution, simultaneously reducing the entire residual of the system of equations. The method reduces the requirements for the matrix of SLE. The following SLE property is used: the point is located farther from the system solution result compared to the point projection onto the equation. Developing the approach, the main emphasis is made on reduction of requirements towards the matrix of the system of equations, allowing for higher volume of calculations.
基于逼近解投影分析的线性方程组求解
本文研究求解线性方程组(SLE)的一种迭代方法,该方法在最终解的方向上对近似解点进行多次位移,同时减小了方程组的整体残差。该方法降低了对SLE矩阵的要求。使用以下SLE性质:与点投影到方程上相比,点位于离系统解结果更远的地方。在发展这种方法时,主要强调的是减少对方程组矩阵的要求,从而允许更大的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信