GAMES AND REFLECTION IN

IF 0.5 3区 数学 Q3 LOGIC
J. P. Aguilera
{"title":"GAMES AND REFLECTION IN","authors":"J. P. Aguilera","doi":"10.1017/jsl.2020.20","DOIUrl":null,"url":null,"abstract":"<jats:p>We characterize the determinacy of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline3.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline4.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> in terms of determinacy assertions for short games. Specifically, we show that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline5.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline6.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> are determined if, and only if, there is a transitive model of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline7.png\" /><jats:tex-math>\n${\\mathsf {KP}}+{\\mathsf {AD}}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> containing <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline8.png\" /><jats:tex-math>\n$\\mathbb {R}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> and reflecting <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline9.png\" /><jats:tex-math>\n$\\Pi _1$\n</jats:tex-math></jats:alternatives></jats:inline-formula> facts about the next admissible set.</jats:p><jats:p>As a consequence, one obtains that, over the base theory <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline10.png\" /><jats:tex-math>\n${\\mathsf {KP}} + {\\mathsf {DC}} + ``\\mathbb {R}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> exists,” determinacy for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline11.png\" /><jats:tex-math>\n$F_\\sigma $\n</jats:tex-math></jats:alternatives></jats:inline-formula> games of length <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline12.png\" /><jats:tex-math>\n$\\omega ^2$\n</jats:tex-math></jats:alternatives></jats:inline-formula> is stronger than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline13.png\" /><jats:tex-math>\n${\\mathsf {AD}}$\n</jats:tex-math></jats:alternatives></jats:inline-formula>, but weaker than <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022481220000201_inline14.png\" /><jats:tex-math>\n${\\mathsf {AD}} + \\Sigma _1$\n</jats:tex-math></jats:alternatives></jats:inline-formula>-separation.</jats:p>","PeriodicalId":17088,"journal":{"name":"Journal of Symbolic Logic","volume":"49 1","pages":"1-22"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jsl.2020.20","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

Abstract

We characterize the determinacy of $F_\sigma $ games of length $\omega ^2$ in terms of determinacy assertions for short games. Specifically, we show that $F_\sigma $ games of length $\omega ^2$ are determined if, and only if, there is a transitive model of ${\mathsf {KP}}+{\mathsf {AD}}$ containing $\mathbb {R}$ and reflecting $\Pi _1$ facts about the next admissible set.As a consequence, one obtains that, over the base theory ${\mathsf {KP}} + {\mathsf {DC}} + ``\mathbb {R}$ exists,” determinacy for $F_\sigma $ games of length $\omega ^2$ is stronger than ${\mathsf {AD}}$ , but weaker than ${\mathsf {AD}} + \Sigma _1$ -separation.
游戏与反思
我们根据短博弈的确定性断言来表征长度为$\omega ^2$的$F_\sigma $博弈的确定性。具体地说,我们证明了长度为$\omega ^2$的$F_\sigma $对策是确定的,当且仅当存在一个包含$\mathbb {R}$并反映关于下一个可容许集的$\Pi _1$事实的${\mathsf {KP}}+{\mathsf {AD}}$传递模型。因此,根据${\mathsf {KP}} + {\mathsf {DC}} + ``\mathbb {R}$存在的基本理论,“长度为$\omega ^2$的$F_\sigma $游戏的确定性比${\mathsf {AD}}$强,但比${\mathsf {AD}} + \Sigma _1$ -分离弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Journal of Symbolic Logic publishes research in mathematical logic and its applications of the highest quality. Papers are expected to exhibit innovation and not merely be minor variations on established work. They should also be of interest to a broad audience. JSL has been, since its establishment in 1936, the leading journal in the world devoted to mathematical logic. Its prestige derives from its longevity and from the standard of submissions -- which, combined with the standards of reviewing, all contribute to the fact that it receives more citations than any other journal in logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信