M. Bonato, I. Prandoni, G. De Zotti, M. Brienza, R. Morganti, M. Vaccari
{"title":"New constraints on the 1.4 GHz source number counts and luminosity functions in the Lockman Hole field","authors":"M. Bonato, I. Prandoni, G. De Zotti, M. Brienza, R. Morganti, M. Vaccari","doi":"10.1093/mnras/staa3218","DOIUrl":null,"url":null,"abstract":"We present a study of the 1173 sources brighter than $S_{1.4\\,\\rm GHz}= 120\\,\\mu$Jy detected over an area of $\\simeq 1.4\\,\\hbox{deg}^{2}$ in the Lockman Hole field. Exploiting the multi-band information available in this field for $\\sim$79% of the sample, sources have been classified into radio loud (RL) active galactic nuclei (AGNs), star forming galaxies (SFGs) and radio quiet (RQ) AGNs, using a variety of diagnostics available in the literature. Exploiting the observed tight anti-correlations between IRAC band 1 or band 2 and the source redshift we could assign a redshift to 177 sources missing a spectroscopic measurement or a reliable photometric estimate. A Monte Carlo approach was used to take into account the spread around the mean relation. The derived differential number counts and luminosity functions at several redshifts of each population show a good consistency with models and with earlier estimates made using data from different surveys and applying different approaches. Our results confirm that below $\\sim300\\,\\mu$Jy SFGs$+$RQ AGNs overtake RL AGNs that dominate at brighter flux densities. We also confirm earlier indications of a similar evolution of RQ AGNs and SFGs. Finally, we discuss the angular correlation function of our sources and highlight its sensitivity to the criteria used for the classification.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present a study of the 1173 sources brighter than $S_{1.4\,\rm GHz}= 120\,\mu$Jy detected over an area of $\simeq 1.4\,\hbox{deg}^{2}$ in the Lockman Hole field. Exploiting the multi-band information available in this field for $\sim$79% of the sample, sources have been classified into radio loud (RL) active galactic nuclei (AGNs), star forming galaxies (SFGs) and radio quiet (RQ) AGNs, using a variety of diagnostics available in the literature. Exploiting the observed tight anti-correlations between IRAC band 1 or band 2 and the source redshift we could assign a redshift to 177 sources missing a spectroscopic measurement or a reliable photometric estimate. A Monte Carlo approach was used to take into account the spread around the mean relation. The derived differential number counts and luminosity functions at several redshifts of each population show a good consistency with models and with earlier estimates made using data from different surveys and applying different approaches. Our results confirm that below $\sim300\,\mu$Jy SFGs$+$RQ AGNs overtake RL AGNs that dominate at brighter flux densities. We also confirm earlier indications of a similar evolution of RQ AGNs and SFGs. Finally, we discuss the angular correlation function of our sources and highlight its sensitivity to the criteria used for the classification.
我们提出了一项研究,研究了在Lockman Hole油田$\simeq 1.4\,\hbox{deg}^{2}$区域探测到的1173个比$S_{1.4\,\rm GHz}= 120\,\mu$ Jy更亮的光源。利用该领域可用的多波段信息为$\sim$ 79% of the sample, sources have been classified into radio loud (RL) active galactic nuclei (AGNs), star forming galaxies (SFGs) and radio quiet (RQ) AGNs, using a variety of diagnostics available in the literature. Exploiting the observed tight anti-correlations between IRAC band 1 or band 2 and the source redshift we could assign a redshift to 177 sources missing a spectroscopic measurement or a reliable photometric estimate. A Monte Carlo approach was used to take into account the spread around the mean relation. The derived differential number counts and luminosity functions at several redshifts of each population show a good consistency with models and with earlier estimates made using data from different surveys and applying different approaches. Our results confirm that below $\sim300\,\mu$Jy SFGs$+$RQ AGNs overtake RL AGNs that dominate at brighter flux densities. We also confirm earlier indications of a similar evolution of RQ AGNs and SFGs. Finally, we discuss the angular correlation function of our sources and highlight its sensitivity to the criteria used for the classification.