FUZZY EXTREME LEARNING MACHINE FOR A CLASS OF FUZZY INFERENCE SYSTEMS

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hai-Jun Rong, G. Huang, Yong-Qi Liang
{"title":"FUZZY EXTREME LEARNING MACHINE FOR A CLASS OF FUZZY INFERENCE SYSTEMS","authors":"Hai-Jun Rong, G. Huang, Yong-Qi Liang","doi":"10.1142/S0218488513400151","DOIUrl":null,"url":null,"abstract":"Recently an Online Sequential Fuzzy Extreme Learning (OS-Fuzzy-ELM) algorithm has been developed by Rong et al. for the RBF-like fuzzy neural systems where a fuzzy inference system is equivalent to a RBF network under some conditions. In the paper the learning ability of the batch version of OS-Fuzzy-ELM, called as Fuzzy-ELM is further evaluated to train a class of fuzzy inference systems which can not be represented by the RBF networks. The equivalence between the output of the fuzzy system and that of a generalized Single-Hidden Layer Feedforward Network as presented in Huang et al. is shown first, which is then used to prove the validity of the Fuzzy-ELM algorithm. In Fuzzy-ELM, the parameters of the fuzzy membership functions are randomly assigned and then the corresponding consequent parameters are determined analytically. Besides an input variable selection method based on the correlation measure is proposed to select the relevant inputs as the inputs of the fuzzy system. This can avoid the exponential increase of number of fuzzy rules with the increase of dimension of input variables while maintaining the testing performance and reducing the computation burden. Performance comparison of Fuzzy-ELM with other existing algorithms is presented using some real-world regression benchmark problems. The results show that the proposed Fuzzy-ELM produces similar or better accuracies with a significantly lower training time.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"11 1","pages":"51-61"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400151","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

Abstract

Recently an Online Sequential Fuzzy Extreme Learning (OS-Fuzzy-ELM) algorithm has been developed by Rong et al. for the RBF-like fuzzy neural systems where a fuzzy inference system is equivalent to a RBF network under some conditions. In the paper the learning ability of the batch version of OS-Fuzzy-ELM, called as Fuzzy-ELM is further evaluated to train a class of fuzzy inference systems which can not be represented by the RBF networks. The equivalence between the output of the fuzzy system and that of a generalized Single-Hidden Layer Feedforward Network as presented in Huang et al. is shown first, which is then used to prove the validity of the Fuzzy-ELM algorithm. In Fuzzy-ELM, the parameters of the fuzzy membership functions are randomly assigned and then the corresponding consequent parameters are determined analytically. Besides an input variable selection method based on the correlation measure is proposed to select the relevant inputs as the inputs of the fuzzy system. This can avoid the exponential increase of number of fuzzy rules with the increase of dimension of input variables while maintaining the testing performance and reducing the computation burden. Performance comparison of Fuzzy-ELM with other existing algorithms is presented using some real-world regression benchmark problems. The results show that the proposed Fuzzy-ELM produces similar or better accuracies with a significantly lower training time.
一类模糊推理系统的模糊极值学习机
最近,Rong等人针对类RBF模糊神经系统提出了一种在线顺序模糊极限学习(OS-Fuzzy-ELM)算法,其中模糊推理系统在某些条件下等价于RBF网络。本文进一步评估了批处理版本的OS-Fuzzy-ELM(简称fuzzy - elm)的学习能力,以训练出一类无法用RBF网络表示的模糊推理系统。首先证明了模糊系统的输出与Huang等人提出的广义单隐层前馈网络的输出之间的等价性,然后用它来证明fuzzy - elm算法的有效性。在fuzzy - elm中,随机分配模糊隶属函数的参数,然后解析确定相应的后续参数。此外,提出了一种基于关联测度的输入变量选择方法,选择相关输入作为模糊系统的输入。这样既可以避免模糊规则数随着输入变量维数的增加呈指数增长的问题,又可以保持测试性能,减少计算量。利用一些现实世界的回归基准问题,对模糊elm算法与其他现有算法的性能进行了比较。结果表明,所提出的模糊elm在较短的训练时间内产生了相似或更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信