{"title":"Lightweight Symbolic Regression with the Interaction - Transformation Representation","authors":"Guilherme Seidyo Imai Aldeia, F. O. França","doi":"10.1109/CEC.2018.8477951","DOIUrl":null,"url":null,"abstract":"Symbolic Regression techniques stand out from other regression analysis tools because of the possibility of generating powerful but yet simple expressions. These simple expressions may be useful in many practical situations in which the practitioner wants to interpret the obtained results, finetune the model, or understand the generating phenomena. Despite this possibility, the current state-of-the-art algorithms for Symbolic Regression usually require a high computational budget while having little guarantees regarding the simplicity of the returned expressions. Recently, a new Data Structure representation for mathematical expressions, called Interaction-Transformation (IT), was introduced together with a search-based algorithm named SymTree that surpassed a subset of the recent Symbolic Regression algorithms and even some state-of-the-art nonlinear regression algorithms, while returning simple expressions as a result. This paper introduces a lightweight tool based on this algorithm, named Lab Assistant. This tool runs on the client-side of any compatible Internet browser with JavaScript. Alongside this tool, two algorithms using the IT representation are introduced. Some experiments are performed in order to show the potential of the Lab Assistant to help practitioners, professors, researchers and students willing to experiment with Symbolic Regression. The results showed that this tool is competent to find the correct expression for many well known Physics and Engineering relations within a reasonable average time frame of a few seconds. This tool opens up lots of possibilities in Symbolic Regression research for low-cost devices to be used in applications where a high-end computer is not available.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"15 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Symbolic Regression techniques stand out from other regression analysis tools because of the possibility of generating powerful but yet simple expressions. These simple expressions may be useful in many practical situations in which the practitioner wants to interpret the obtained results, finetune the model, or understand the generating phenomena. Despite this possibility, the current state-of-the-art algorithms for Symbolic Regression usually require a high computational budget while having little guarantees regarding the simplicity of the returned expressions. Recently, a new Data Structure representation for mathematical expressions, called Interaction-Transformation (IT), was introduced together with a search-based algorithm named SymTree that surpassed a subset of the recent Symbolic Regression algorithms and even some state-of-the-art nonlinear regression algorithms, while returning simple expressions as a result. This paper introduces a lightweight tool based on this algorithm, named Lab Assistant. This tool runs on the client-side of any compatible Internet browser with JavaScript. Alongside this tool, two algorithms using the IT representation are introduced. Some experiments are performed in order to show the potential of the Lab Assistant to help practitioners, professors, researchers and students willing to experiment with Symbolic Regression. The results showed that this tool is competent to find the correct expression for many well known Physics and Engineering relations within a reasonable average time frame of a few seconds. This tool opens up lots of possibilities in Symbolic Regression research for low-cost devices to be used in applications where a high-end computer is not available.