Optimal designs for smoothing splines

H. Dette, V. Melas, A. Pepelyshev
{"title":"Optimal designs for smoothing splines","authors":"H. Dette, V. Melas, A. Pepelyshev","doi":"10.17877/DE290R-206","DOIUrl":null,"url":null,"abstract":"In the common nonparametric regression model we consider the problem of constructing optimal designs, if the unknown curve is estimated by a smoothing spline. A new basis for the space of natural splines is derived, and the local minimax property for these splines is used to derive two optimality criteria for the construction of optimal designs. The first criterion determines the design for a most precise estimation of the coefficients in the spline representation and corresponds to D-optimality, while the second criterion is the G-criterion and corresponds to an accurate prediction of the curve. Several properties of the optimal designs are derived. In general D- and G-optimal designs are not equivalent. Optimal designs are determined numerically and compared with the uniform design.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the common nonparametric regression model we consider the problem of constructing optimal designs, if the unknown curve is estimated by a smoothing spline. A new basis for the space of natural splines is derived, and the local minimax property for these splines is used to derive two optimality criteria for the construction of optimal designs. The first criterion determines the design for a most precise estimation of the coefficients in the spline representation and corresponds to D-optimality, while the second criterion is the G-criterion and corresponds to an accurate prediction of the curve. Several properties of the optimal designs are derived. In general D- and G-optimal designs are not equivalent. Optimal designs are determined numerically and compared with the uniform design.
优化设计平滑样条
在一般的非参数回归模型中,我们考虑用光滑样条估计未知曲线的最优设计问题。导出了自然样条空间的一种新基,并利用这些样条的局部极大极小性导出了构造优化设计的两个最优性准则。第一个准则决定了在样条表示中最精确估计系数的设计,对应于d -最优性,而第二个准则是g准则,对应于曲线的准确预测。推导了优化设计的几个性质。一般来说,D-最优设计和g -最优设计是不相等的。用数值方法确定了最优设计,并与均匀设计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信