{"title":"Derimorphisms over Algebras and Applications","authors":"X. Cao, S.H. Liu, X.S. Lu, Z.J. Ye, Z.R. Yu, Y.H. Zhang","doi":"10.1142/s1005386723000160","DOIUrl":null,"url":null,"abstract":"The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The new concept “derimorphism” generalizing both derivation and homomorphism is defined. When a derimorphism is invertible, its inverse is a Rota–Baxter operator. The general theory of derimorphism is established. The classification of all derimorphisms over an associative unital algebra is obtained. Contrary to the nonexistence of nontrivial positive derivations, it is shown that nontrivial positive derimorphisms do exist over any pair of opposite orderings over [Formula: see text], the lattice-ordered full matrix algebra and upper triangular matrix algebra over a totally ordered field.