On the minimal symplectic area of Lagrangians

Pub Date : 2020-12-05 DOI:10.4310/jsg.2022.v20.n6.a5
Zhengyi Zhou
{"title":"On the minimal symplectic area of Lagrangians","authors":"Zhengyi Zhou","doi":"10.4310/jsg.2022.v20.n6.a5","DOIUrl":null,"url":null,"abstract":"We show that the minimal symplectic area of Lagrangian submanifolds are universally bounded in symplectically aspherical domains with vanishing symplectic cohomology. If an exact domain admits a $k$-semi-dilation, then the minimal symplectic area is universally bounded for $K(\\pi,1)$-Lagrangians. As a corollary, we show that Arnold chord conjecture holds for the following four cases: (1) $Y$ admits an exact filling with $SH^*(W)=0$ (for some ring coefficient); (2) $Y$ admits a symplectically aspherical filling with $SH^*(W)=0$ and simply connected Legendrians; (3) $Y$ admits an exact filling with a $k$-semi-dilation and the Legendrian is a $K(\\pi,1)$ space; (4) $Y$ is the cosphere bundle $S^*Q$ with $\\pi_2(Q)\\to H_2(Q)$ nontrivial and the Legendrian has trivial $\\pi_2$. In addition, we obtain the existence of homoclinic orbits in case (1). We also provide many more examples with $k$-semi-dilations in all dimensions $\\ge 4$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n6.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We show that the minimal symplectic area of Lagrangian submanifolds are universally bounded in symplectically aspherical domains with vanishing symplectic cohomology. If an exact domain admits a $k$-semi-dilation, then the minimal symplectic area is universally bounded for $K(\pi,1)$-Lagrangians. As a corollary, we show that Arnold chord conjecture holds for the following four cases: (1) $Y$ admits an exact filling with $SH^*(W)=0$ (for some ring coefficient); (2) $Y$ admits a symplectically aspherical filling with $SH^*(W)=0$ and simply connected Legendrians; (3) $Y$ admits an exact filling with a $k$-semi-dilation and the Legendrian is a $K(\pi,1)$ space; (4) $Y$ is the cosphere bundle $S^*Q$ with $\pi_2(Q)\to H_2(Q)$ nontrivial and the Legendrian has trivial $\pi_2$. In addition, we obtain the existence of homoclinic orbits in case (1). We also provide many more examples with $k$-semi-dilations in all dimensions $\ge 4$.
分享
查看原文
关于拉格朗日算子的最小辛面积
证明了拉格朗日子流形的极小辛面积在辛非球域上是普遍有界的。如果精确定义域允许$k$ -半膨胀,则对于$K(\pi,1)$ -拉格朗日,最小辛面积是普遍有界的。作为推论,我们证明Arnold弦猜想在以下四种情况下成立:(1)$Y$允许$SH^*(W)=0$的精确填充(对于某些环系数);(2) $Y$允许一个含有$SH^*(W)=0$和单连通Legendrians的辛非球面填充;(3) $Y$允许一个$k$ -半膨胀的精确填充,Legendrian是一个$K(\pi,1)$空间;(4) $Y$是具有$\pi_2(Q)\to H_2(Q)$非平凡的球束$S^*Q$, Legendrian具有平凡的球束$\pi_2$。此外,我们在情形(1)中得到了同斜轨道的存在性。我们还提供了更多的在所有维度$\ge 4$中$k$ -半膨胀的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信