Composantes connexes géométriques de la tour des espaces de modules de groupes $p$-divisibles

IF 1.3 1区 数学 Q1 MATHEMATICS
Miaofen Chen
{"title":"Composantes connexes géométriques de la tour des espaces de modules de groupes $p$-divisibles","authors":"Miaofen Chen","doi":"10.24033/ASENS.2225","DOIUrl":null,"url":null,"abstract":"Let M̆ be an unramified Rapoport-Zink space of EL type or unitary/symplectic PEL type. Let (M̆K)K be the tower of Berkovich’s analytic spaces classifying the level structures over the generic fiber of M̆. In [Che13], we have defined a determinant morphism detK from the tower (M̆K)K to a tower of Berkovich’s analytic spaces of dimension 0 associated to the cocenter of the reductive group related to the space M̆. Suppose that the Newton polygon and Hodge polygon related to M̆ don’t touch each other except their end point. And suppose that a conjecture on the set of connected components of the reduced special fiber of M̆ holds. Then we prove that the geometric fibers of the determinant morphism detK are the geometrically connected components of M̆K . The conjecture in the hypothesis will be confirmed in a paper in preparation by Kisin, Viehmann and the author.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"24 1","pages":"723-764"},"PeriodicalIF":1.3000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2225","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Let M̆ be an unramified Rapoport-Zink space of EL type or unitary/symplectic PEL type. Let (M̆K)K be the tower of Berkovich’s analytic spaces classifying the level structures over the generic fiber of M̆. In [Che13], we have defined a determinant morphism detK from the tower (M̆K)K to a tower of Berkovich’s analytic spaces of dimension 0 associated to the cocenter of the reductive group related to the space M̆. Suppose that the Newton polygon and Hodge polygon related to M̆ don’t touch each other except their end point. And suppose that a conjecture on the set of connected components of the reduced special fiber of M̆ holds. Then we prove that the geometric fibers of the determinant morphism detK are the geometrically connected components of M̆K . The conjecture in the hypothesis will be confirmed in a paper in preparation by Kisin, Viehmann and the author.
群模空间的塔相关几何分量$p$-可整除
设M是EL型或酉/辛PEL型的非分枝Rapoport-Zink空间。设(M′K)K为Berkovich解析空间的塔,对M′的一般纤维上的层结构进行分类。在[Che13]中,我们定义了一个行列式态射detK,从塔(M′K)K到与空间M′相关的约化群的中心相关的0维Berkovich解析空间的塔。假设牛顿多边形和与M相关的霍奇多边形除了它们的端点外互不接触。并且假设一个关于M的简化特殊光纤的连通分量集的猜想成立。然后证明了行列式态射detK的几何纤维是M K的几何连通分量。假设中的猜想将在Kisin, Viehmann和作者准备的一篇论文中得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics. Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition. The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信