Near-idempotents, near-nilpotents and stability of critical points for Riccati equations

Pub Date : 2018-12-30 DOI:10.3336/GM.53.2.06
B. Zalar, M. Mencinger, Jadranska Ljubljana Slovenia mechanics
{"title":"Near-idempotents, near-nilpotents and stability of critical points for Riccati equations","authors":"B. Zalar, M. Mencinger, Jadranska Ljubljana Slovenia mechanics","doi":"10.3336/GM.53.2.06","DOIUrl":null,"url":null,"abstract":"The paper introduces two algebraic concepts, near-idempotents and near-nilpotents associated to subspaces N of critical points, which can be used to re-phrase a theorem due to Boujemaa, El Qotbi and Rouiouih on stability for the Ricatti equation, ẋ = x(t)2, associated to algebra A ≈ R. Using this concepts their result corresponds to the case dim N = 1. Our main results are a generalization of the above mentioned theorem to N of arbitrary dimension and a counter-example which shows, even in the general setting, that the essential condition that critical points must be eigenvectors of a suitable multiplication operator cannot be omitted from the formulation due to Boujemaa et al.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/GM.53.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper introduces two algebraic concepts, near-idempotents and near-nilpotents associated to subspaces N of critical points, which can be used to re-phrase a theorem due to Boujemaa, El Qotbi and Rouiouih on stability for the Ricatti equation, ẋ = x(t)2, associated to algebra A ≈ R. Using this concepts their result corresponds to the case dim N = 1. Our main results are a generalization of the above mentioned theorem to N of arbitrary dimension and a counter-example which shows, even in the general setting, that the essential condition that critical points must be eigenvectors of a suitable multiplication operator cannot be omitted from the formulation due to Boujemaa et al.
分享
查看原文
Riccati方程的近等幂、近零幂和临界点的稳定性
本文引入了临界点子空间N的近等幂函数和近零幂函数两个代数概念,它们可以用来重新表述Boujemaa、El Qotbi和rouiouh关于代数a≈r的Ricatti方程, = x(t)2的稳定性定理。利用这些概念,它们的结果对应于N = 1的情况。我们的主要结果是将上述定理推广到任意维数的N,并给出一个反例,该反例表明,即使在一般情况下,由于Boujemaa等人的推导,临界点必须是合适乘法算子的特征向量这一基本条件也不能从公式中省略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信