H. Liu, Xiaoxia Li, Yangyang Li, Min Wang, Fanjun Meng, Jinling Huang, Rui Yu, Yang Wang
{"title":"Preparation, in-vitro evaluation, and delivery of colchicine via polyacrylamide hydrogel","authors":"H. Liu, Xiaoxia Li, Yangyang Li, Min Wang, Fanjun Meng, Jinling Huang, Rui Yu, Yang Wang","doi":"10.30492/IJCCE.2021.533974.4830","DOIUrl":null,"url":null,"abstract":"Hydrogels have excellent biocompatibility and are widely used in biomedical applications. However, it is still a challenge to build a hydrogel with outstanding mechanical properties and multiple functions. In this study, a polyacrylamide (PAM) hydrogel with a uniform network structure was achieved through an ultraviolet (UV)-responsive organic crosslinking agent, and a higher mechanical strength PAM-Ag+ hydrogel was designed through the introduction of silver ion by metal coordination interaction. Various contents of N'N-bis(acryloyl)cysteamine (BACA) as cross-linker, acrylamide (AM) as monomer, and Irgacure 2959 as initiator were investigated to have an optimal combination of high strength. Thus, the PAM-Ag+ hydrogel exhibited excellent adhesive behavior that could be fixed to the human forearm and any part of the skin, such as the finger and elbow joint. In addition, the properties and biocompatibility evaluations of the tough hydrogel in medical wound dressing were investigated. Meanwhile, these results showed that PAM-Ag+ hydrogels possess high stretchable (2600%) and mechanical robust (2.55 MPa) properties. Excitingly, the release of colchicine (Col) more than 95% in 48 h demonstrated the hydrogel highly potential in medical dressing and drug release applications in virtue of the excellent moisture retention, permeability, water tightness, swelling ratio, and biocompatibility.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.533974.4830","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels have excellent biocompatibility and are widely used in biomedical applications. However, it is still a challenge to build a hydrogel with outstanding mechanical properties and multiple functions. In this study, a polyacrylamide (PAM) hydrogel with a uniform network structure was achieved through an ultraviolet (UV)-responsive organic crosslinking agent, and a higher mechanical strength PAM-Ag+ hydrogel was designed through the introduction of silver ion by metal coordination interaction. Various contents of N'N-bis(acryloyl)cysteamine (BACA) as cross-linker, acrylamide (AM) as monomer, and Irgacure 2959 as initiator were investigated to have an optimal combination of high strength. Thus, the PAM-Ag+ hydrogel exhibited excellent adhesive behavior that could be fixed to the human forearm and any part of the skin, such as the finger and elbow joint. In addition, the properties and biocompatibility evaluations of the tough hydrogel in medical wound dressing were investigated. Meanwhile, these results showed that PAM-Ag+ hydrogels possess high stretchable (2600%) and mechanical robust (2.55 MPa) properties. Excitingly, the release of colchicine (Col) more than 95% in 48 h demonstrated the hydrogel highly potential in medical dressing and drug release applications in virtue of the excellent moisture retention, permeability, water tightness, swelling ratio, and biocompatibility.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.