Joint Channel Parameter Estimation Using Evolutionary Algorithm

Wei Li, Q. Ni
{"title":"Joint Channel Parameter Estimation Using Evolutionary Algorithm","authors":"Wei Li, Q. Ni","doi":"10.1109/ICC.2010.5502478","DOIUrl":null,"url":null,"abstract":"This paper proposes to utilise Evolutionary Algorithm (EA) to jointly estimate the Time of Arrival, Direction of Arrival, and amplitude of impinging waves in a mobile radio environment. The problem is presented as the joint Maximum Likelihood (ML) estimation of the channel parameters where typically, the high dimensional non-linear cost function is deemed to be too computationally expensive to be solved directly. Simulation results show that the proposed method is extremely robust to initialisation errors and low SNR environments, while at the same time it is also computationally more efficient than popular iterative ML methods i.e. the Space-Alternating Generalised Expectation-maximisation (SAGE) algorithm.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5502478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes to utilise Evolutionary Algorithm (EA) to jointly estimate the Time of Arrival, Direction of Arrival, and amplitude of impinging waves in a mobile radio environment. The problem is presented as the joint Maximum Likelihood (ML) estimation of the channel parameters where typically, the high dimensional non-linear cost function is deemed to be too computationally expensive to be solved directly. Simulation results show that the proposed method is extremely robust to initialisation errors and low SNR environments, while at the same time it is also computationally more efficient than popular iterative ML methods i.e. the Space-Alternating Generalised Expectation-maximisation (SAGE) algorithm.
基于进化算法的联合信道参数估计
本文提出利用进化算法(EA)联合估计移动无线电环境中入射波的到达时间、到达方向和振幅。该问题以通道参数的联合最大似然估计(ML)的形式提出,其中高维非线性代价函数通常被认为计算成本太高而无法直接解决。仿真结果表明,该方法对初始化误差和低信噪比环境具有极强的鲁棒性,同时在计算效率上也优于流行的迭代ML方法,即空间交替广义期望最大化(SAGE)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信