{"title":"A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱","authors":"Chippy M. Manu, G. SreeniK.","doi":"10.1145/3571600.3571601","DOIUrl":null,"url":null,"abstract":"Dehazing is a difficult process because of the damage caused by the non-uniform fog and haze distribution in images. To address these issues, a Multi-Scale Residual dense Dehazing Network (MSRDNet) is proposed in this paper. A Contextual feature extraction module (CFM) for extracting multi-scale features and an Adaptive Residual Dense Module (ARDN) are used as sub-modules of MSRDNet. Moreover, all the hierarchical features extracted by each ARDN are fused, which helps to detect hazy maps of varying lengths with multi-scale features. This framework outperforms the state-of-the-art dehazing methods in removing haze while maintaining and restoring image detail in real-world and synthetic images captured under various scenarios.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571600.3571601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dehazing is a difficult process because of the damage caused by the non-uniform fog and haze distribution in images. To address these issues, a Multi-Scale Residual dense Dehazing Network (MSRDNet) is proposed in this paper. A Contextual feature extraction module (CFM) for extracting multi-scale features and an Adaptive Residual Dense Module (ARDN) are used as sub-modules of MSRDNet. Moreover, all the hierarchical features extracted by each ARDN are fused, which helps to detect hazy maps of varying lengths with multi-scale features. This framework outperforms the state-of-the-art dehazing methods in removing haze while maintaining and restoring image detail in real-world and synthetic images captured under various scenarios.