J. Cortadella, M. Kishinevsky, S. Burns, K. Stevens
{"title":"Synthesis of asynchronous control circuits with automatically generated relative timing assumptions","authors":"J. Cortadella, M. Kishinevsky, S. Burns, K. Stevens","doi":"10.1109/ICCAD.1999.810669","DOIUrl":null,"url":null,"abstract":"This paper describes a method of synthesis of asynchronous circuits with relative timing. Asynchronous communication between gates and modules typically utilizes handshakes to ensure functionality. Relative timing assumptions in the form \"event a occurs before event b\" can be used to remove redundant handshakes and associated logic. This paper presents a method for automatic generation of relative timing assumptions from the untimed specification. These assumptions can be used for area and delay optimization of the circuit. A set of relative timing constraints sufficient for the correct operation of the circuit is back-annotated to the designer. Experimental results for control circuits of a prototype iA32 instruction length decoding and steering unit called RAPPID (Revolving Asynchronous Pentium(R)Processor Instruction Decoder) shows significant improvements in area and delay over speed-independent circuits.","PeriodicalId":6414,"journal":{"name":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","volume":"65 1","pages":"324-331"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1999.810669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper describes a method of synthesis of asynchronous circuits with relative timing. Asynchronous communication between gates and modules typically utilizes handshakes to ensure functionality. Relative timing assumptions in the form "event a occurs before event b" can be used to remove redundant handshakes and associated logic. This paper presents a method for automatic generation of relative timing assumptions from the untimed specification. These assumptions can be used for area and delay optimization of the circuit. A set of relative timing constraints sufficient for the correct operation of the circuit is back-annotated to the designer. Experimental results for control circuits of a prototype iA32 instruction length decoding and steering unit called RAPPID (Revolving Asynchronous Pentium(R)Processor Instruction Decoder) shows significant improvements in area and delay over speed-independent circuits.