Simulation Metamodeling using Dynamic Bayesian Networks with Multiple Time Scales

Mikko Harju, Kai Virtanen, Jirka Poropudas
{"title":"Simulation Metamodeling using Dynamic Bayesian Networks with Multiple Time Scales","authors":"Mikko Harju, Kai Virtanen, Jirka Poropudas","doi":"10.3384/ECP17142619","DOIUrl":null,"url":null,"abstract":"The utilization of dynamic Bayesian networks (DBNs) in simulation metamodeling enables the investigation of the time evolution of state variables of a simulation model. DBN metamodels have previously described the changes in the probability distribution of the simulation state by using a time slice structure in which the state variables are described at common time instants. In this paper, the novel approach to the determination of the time slice structure is introduced. It enables the selection of time instants of the DBN separately for each state variable. In this way, a more accurate metamodel representing multiple time scales of the variables is achieved. Furthermore, the construction is streamlined by presenting a dynamic programming algo-rithm for determining the key time instants for individual variables. The construction and use of the DBN metamodels are illustrated by an example problem dealing with the simulated operation of an air base.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3384/ECP17142619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of dynamic Bayesian networks (DBNs) in simulation metamodeling enables the investigation of the time evolution of state variables of a simulation model. DBN metamodels have previously described the changes in the probability distribution of the simulation state by using a time slice structure in which the state variables are described at common time instants. In this paper, the novel approach to the determination of the time slice structure is introduced. It enables the selection of time instants of the DBN separately for each state variable. In this way, a more accurate metamodel representing multiple time scales of the variables is achieved. Furthermore, the construction is streamlined by presenting a dynamic programming algo-rithm for determining the key time instants for individual variables. The construction and use of the DBN metamodels are illustrated by an example problem dealing with the simulated operation of an air base.
基于多时间尺度动态贝叶斯网络的仿真元建模
动态贝叶斯网络(DBNs)在仿真元建模中的应用,使得研究仿真模型状态变量的时间演化成为可能。DBN元模型以前通过使用时间片结构来描述仿真状态概率分布的变化,其中状态变量在公共时间瞬间描述。本文介绍了一种确定时间片结构的新方法。它支持为每个状态变量分别选择DBN的时间瞬间。通过这种方式,可以获得一个更精确的元模型来表示变量的多个时间尺度。此外,通过提出一种动态规划算法来确定各个变量的关键时刻,简化了结构。以某空军基地模拟作战为例,说明了DBN元模型的构建和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信