Optimization Algorithms for Dynamic Tuning of Wide Bandgap Semiconductor Device Models

W. Collings, Tolen Nelson, Andrew J. Sellers, R. Khanna, A. Courtay, Sergio J. Jimenez, A. Lemmon
{"title":"Optimization Algorithms for Dynamic Tuning of Wide Bandgap Semiconductor Device Models","authors":"W. Collings, Tolen Nelson, Andrew J. Sellers, R. Khanna, A. Courtay, Sergio J. Jimenez, A. Lemmon","doi":"10.1109/APEC42165.2021.9487029","DOIUrl":null,"url":null,"abstract":"Circuit and device parasitics have an outsized effect on the switching voltage and current waveforms of wide bandgap semiconductors. The variation of these parasitic components greatly hinders the ability to develop simulation models of wide bandgap semiconductors that accurately predict transient device performance. As a solution, the concept of dynamic tuning has become prevalent in the modeling and simulation of wide bandgap semiconductor-based power electronics. This paper presents dynamic tuning applied to two different behavioral models of the same 100 V gallium nitride (GaN) device. Although the models are of the same device, they are disparate in their prediction capability of the device’s empirically measured static characteristics. The different static characteristics also lead to a marked discrepancy in their transient prediction capabilities. Through dynamic tuning, the error between empirically mea-sured and simulated transient characteristics is improved for both models. This paper thus shows two important results. First, the frequency dependence of the parasitic components within a circuit can be accounted for, to a first order, through dynamically tuning a constant lumped element model of the parasitics. Second, dynamic tuning can be successfully, albeit not as effectively, applied to accurately predict transient behavior even for device models that do not precisely match the data sheet.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Circuit and device parasitics have an outsized effect on the switching voltage and current waveforms of wide bandgap semiconductors. The variation of these parasitic components greatly hinders the ability to develop simulation models of wide bandgap semiconductors that accurately predict transient device performance. As a solution, the concept of dynamic tuning has become prevalent in the modeling and simulation of wide bandgap semiconductor-based power electronics. This paper presents dynamic tuning applied to two different behavioral models of the same 100 V gallium nitride (GaN) device. Although the models are of the same device, they are disparate in their prediction capability of the device’s empirically measured static characteristics. The different static characteristics also lead to a marked discrepancy in their transient prediction capabilities. Through dynamic tuning, the error between empirically mea-sured and simulated transient characteristics is improved for both models. This paper thus shows two important results. First, the frequency dependence of the parasitic components within a circuit can be accounted for, to a first order, through dynamically tuning a constant lumped element model of the parasitics. Second, dynamic tuning can be successfully, albeit not as effectively, applied to accurately predict transient behavior even for device models that do not precisely match the data sheet.
宽带隙半导体器件模型动态调谐的优化算法
电路和器件的寄生对宽禁带半导体的开关电压和电流波形有巨大的影响。这些寄生元件的变化极大地阻碍了开发宽带隙半导体仿真模型的能力,这些模型可以准确地预测瞬态器件的性能。作为一种解决方案,动态调谐的概念已经在基于宽带隙半导体的电力电子的建模和仿真中变得普遍。本文介绍了应用于同一100 V氮化镓器件的两种不同行为模型的动态调谐。虽然这些模型是同一设备的,但它们对设备经验测量的静态特性的预测能力是不同的。不同的静态特性也导致它们的暂态预测能力存在显著差异。通过动态整定,改进了两种模型的实测和仿真误差。因此,本文给出了两个重要的结果。首先,通过动态调整寄生元件的恒定集总元素模型,可以将电路内寄生元件的频率依赖性解释为一阶。其次,动态调优可以成功地应用于准确预测瞬态行为,即使对于不精确匹配数据表的器件模型也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信