Lidia Mutia Sari, Jasmidi Jasmidi, H. Nasution, M. Zubir, Siti Rahmah, R. Selly, P. Faradilla
{"title":"Synthesis of Cu-(TAC) Composite with Oil Palm Empty Fruit Bunch Waste Activated Carbon Through the Adsorption Mechanism of βCarotene","authors":"Lidia Mutia Sari, Jasmidi Jasmidi, H. Nasution, M. Zubir, Siti Rahmah, R. Selly, P. Faradilla","doi":"10.24114/ijcst.v6i2.49371","DOIUrl":null,"url":null,"abstract":"This study aims to determine the adsorption and desorption abilities of activated carbon and Cu-(TAC) composites in the β-carotene adsorption process on Crude Palm Oil (CPO). Oil Palm Empty Fruit Bunches (EFB) are used as activated carbon and modified with MOFs Cu-(TAC). Activated carbon and Cu-(TAC) composites were characterized by XRD, SEM-EDX, and BET. The concentration of β-carotene absorbed during the adsorption process was analyzed using a UV-Vis spectrophotometer. The variations used to determine the optimum conditions for absorption of β-carotene were the mass variation of the adsorbent and the variation in the contact time between the adsorbent and adsorbate. The results of the characterization of activated carbon showed a sharp absorption in the presence of O-H, C-H and C-O groups indicating the presence of cellulose. Activated carbon is amorphous and the Cu-(TAC) composite has a crystal structure and its pore size is mesoporous. The optimum conditions for the use of activated carbon for β-carotene adsorption were the mass variation of 8 grams with 0.495 ppm of β-carotene and contact time at 120 minutes with 2.605 ppm of β-carotene. The optimum condition of the Cu-(TAC) composite in the β-carotene adsorption process was at 4 gram mass variation with 1.026 ppm β-carotene content and optimum contact time at 60 minutes with 6.384 ppm β-carotene content. The ability of desorption can be seen from the percentage of desorption showing activated carbon in the 150th minute with 96.252% while in the Cu-(TAC) composite in the 30th minute with 88.188%.","PeriodicalId":13519,"journal":{"name":"Indonesian Journal of Chemical Science and Technology (IJCST)","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemical Science and Technology (IJCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/ijcst.v6i2.49371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to determine the adsorption and desorption abilities of activated carbon and Cu-(TAC) composites in the β-carotene adsorption process on Crude Palm Oil (CPO). Oil Palm Empty Fruit Bunches (EFB) are used as activated carbon and modified with MOFs Cu-(TAC). Activated carbon and Cu-(TAC) composites were characterized by XRD, SEM-EDX, and BET. The concentration of β-carotene absorbed during the adsorption process was analyzed using a UV-Vis spectrophotometer. The variations used to determine the optimum conditions for absorption of β-carotene were the mass variation of the adsorbent and the variation in the contact time between the adsorbent and adsorbate. The results of the characterization of activated carbon showed a sharp absorption in the presence of O-H, C-H and C-O groups indicating the presence of cellulose. Activated carbon is amorphous and the Cu-(TAC) composite has a crystal structure and its pore size is mesoporous. The optimum conditions for the use of activated carbon for β-carotene adsorption were the mass variation of 8 grams with 0.495 ppm of β-carotene and contact time at 120 minutes with 2.605 ppm of β-carotene. The optimum condition of the Cu-(TAC) composite in the β-carotene adsorption process was at 4 gram mass variation with 1.026 ppm β-carotene content and optimum contact time at 60 minutes with 6.384 ppm β-carotene content. The ability of desorption can be seen from the percentage of desorption showing activated carbon in the 150th minute with 96.252% while in the Cu-(TAC) composite in the 30th minute with 88.188%.