A New Column-Row Method for Traveling Salesman Problem: The Dhouib-Matrix-TSP1

S. Dhouib
{"title":"A New Column-Row Method for Traveling Salesman Problem: The Dhouib-Matrix-TSP1","authors":"S. Dhouib","doi":"10.14445/23497157/ijres-v8i1p102","DOIUrl":null,"url":null,"abstract":"In this paper, a new column-row method named Dhouib-Matrix-TSP1 is designed to solve in polynomial time the Traveling Salesman Problem (TSP). At first, the distance matrix is defined, and then four steps are launched: 1) Selecting the starting position 2) Choosing Rows 3) Discarding by column 3) Transforming route to a tour. Some numerical examples are presented to illustrate the effectiveness of the proposed method. It can be concluded that the Dhouib-Matrix-TSP1 method consumes a small number of iterations (just n iterations, where n represents the number of cities) to solve the TSP, and its result is the closest to the optimum solution.","PeriodicalId":14292,"journal":{"name":"International Journal of Recent Engineering Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Recent Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14445/23497157/ijres-v8i1p102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, a new column-row method named Dhouib-Matrix-TSP1 is designed to solve in polynomial time the Traveling Salesman Problem (TSP). At first, the distance matrix is defined, and then four steps are launched: 1) Selecting the starting position 2) Choosing Rows 3) Discarding by column 3) Transforming route to a tour. Some numerical examples are presented to illustrate the effectiveness of the proposed method. It can be concluded that the Dhouib-Matrix-TSP1 method consumes a small number of iterations (just n iterations, where n represents the number of cities) to solve the TSP, and its result is the closest to the optimum solution.
旅行商问题的一种新的列行法:Dhouib-Matrix-TSP1
本文设计了一种新的列-行方法Dhouib-Matrix-TSP1,用于在多项式时间内求解旅行商问题(TSP)。首先定义距离矩阵,然后启动四个步骤:1)选择起始位置2)选择行3)按列丢弃3)将路线转换为巡回。算例说明了该方法的有效性。可以得出Dhouib-Matrix-TSP1方法求解TSP的迭代次数较少(仅n次迭代,其中n表示城市数),其结果最接近最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信