{"title":"Probability distributions for the run-and-tumble models with variable speed and tumbling rate","authors":"L. Angelani, R. Garra","doi":"10.15559/18-VMSTA127","DOIUrl":null,"url":null,"abstract":"In this paper we consider a telegraph equation with time-dependent coefficients, governing the persistent random walk of a particle moving on the line with a time-varying velocity $c(t)$ and changing direction at instants distributed according to a non-stationary Poisson distribution with rate $\\lambda(t)$. We show that, under suitable assumptions, we are able to find the exact form of the probability distribution. We also consider the space-fractional counterpart of this model, finding the characteristic function of the related process. A conclusive discussion is devoted to the potential applications to run-and-tumble models.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"6 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/18-VMSTA127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper we consider a telegraph equation with time-dependent coefficients, governing the persistent random walk of a particle moving on the line with a time-varying velocity $c(t)$ and changing direction at instants distributed according to a non-stationary Poisson distribution with rate $\lambda(t)$. We show that, under suitable assumptions, we are able to find the exact form of the probability distribution. We also consider the space-fractional counterpart of this model, finding the characteristic function of the related process. A conclusive discussion is devoted to the potential applications to run-and-tumble models.