{"title":"Methods of planning deliveries of food products to a trade network with the selection of suppliers and transport companies","authors":"M. Magiera","doi":"10.24425/acs.2018.124710","DOIUrl":null,"url":null,"abstract":"The paper refers to planning deliveries of food products (especially those available in certain seasons) to the recipients: supermarket networks. The paper presents two approaches to solving problems of simultaneous selection of suppliers and transportation modes and construction of product flow schedules with these transportation modes. Linear mathematical models have been built for the presented solution approaches. The cost criterion has been taken into consideration in them. The following costs have been taken into account: purchase of products by individual recipients, transport services, storing of products supplied before the planned deadlines and penalties for delays in supply of products. Two solution approaches (used for transportation planning and selection of suppliers and selection of transportation modes) have been compared. The monolithic approach calls for simultaneous solutions for the problems of supplier selection and selection of transportation modes. In the alternative (hierarchical) solution approach, suppliers are selected first, and then transportation companies and their relevant transportation modes are selected. The results of computational experiments are used for com-parison of the hierarchical and monolithic solution approaches.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"49 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2018.124710","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper refers to planning deliveries of food products (especially those available in certain seasons) to the recipients: supermarket networks. The paper presents two approaches to solving problems of simultaneous selection of suppliers and transportation modes and construction of product flow schedules with these transportation modes. Linear mathematical models have been built for the presented solution approaches. The cost criterion has been taken into consideration in them. The following costs have been taken into account: purchase of products by individual recipients, transport services, storing of products supplied before the planned deadlines and penalties for delays in supply of products. Two solution approaches (used for transportation planning and selection of suppliers and selection of transportation modes) have been compared. The monolithic approach calls for simultaneous solutions for the problems of supplier selection and selection of transportation modes. In the alternative (hierarchical) solution approach, suppliers are selected first, and then transportation companies and their relevant transportation modes are selected. The results of computational experiments are used for com-parison of the hierarchical and monolithic solution approaches.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.