Philippe Bergault, David Evangelista, Olivier Gu'eant, Douglas A. G. Vieira
{"title":"Closed-form Approximations in Multi-asset Market Making","authors":"Philippe Bergault, David Evangelista, Olivier Gu'eant, Douglas A. G. Vieira","doi":"10.1080/1350486X.2021.1949359","DOIUrl":null,"url":null,"abstract":"ABSTRACT A large proportion of market making models derive from the seminal model of Avellaneda and Stoikov. The numerical approximation of the value function and the optimal quotes in these models remains a challenge when the number of assets is large. In this article, we propose closed-form approximations for the value functions of many multi-asset extensions of the Avellaneda–Stoikov model. These approximations or proxies can be used (i) as heuristic evaluation functions, (ii) as initial value functions in reinforcement learning algorithms, and/or (iii) directly to design quoting strategies through a greedy approach. Regarding the latter, our results lead to new and easily interpretable closed-form approximations for the optimal quotes, both in the finite-horizon case and in the asymptotic (ergodic) regime.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"42 1","pages":"101 - 142"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2021.1949359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 18
Abstract
ABSTRACT A large proportion of market making models derive from the seminal model of Avellaneda and Stoikov. The numerical approximation of the value function and the optimal quotes in these models remains a challenge when the number of assets is large. In this article, we propose closed-form approximations for the value functions of many multi-asset extensions of the Avellaneda–Stoikov model. These approximations or proxies can be used (i) as heuristic evaluation functions, (ii) as initial value functions in reinforcement learning algorithms, and/or (iii) directly to design quoting strategies through a greedy approach. Regarding the latter, our results lead to new and easily interpretable closed-form approximations for the optimal quotes, both in the finite-horizon case and in the asymptotic (ergodic) regime.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.