Controlling spontaneous emission dynamics in semiconductor microcavities

B. Gayral
{"title":"Controlling spontaneous emission dynamics in semiconductor microcavities","authors":"B. Gayral","doi":"10.1051/ANPHYS:200102001","DOIUrl":null,"url":null,"abstract":"Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality – in other words a long photon storage time – are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.\u2029We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed.","PeriodicalId":50779,"journal":{"name":"Annales De Physique","volume":"125 1","pages":"1-135"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ANPHYS:200102001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality – in other words a long photon storage time – are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.
We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed.
半导体微腔中自发发射动力学控制
光的自发发射是可以控制的,空腔量子电动力学告诉我们,原子物理学中的许多实验证明了这一事实。特别地,耦合一个发射极到谐振光子模式的一个腔可以提高其自发发射率:这就是所谓的珀塞尔效应。虽然为了发光半导体器件的利益,实现这些概念似乎很吸引人,但必须非常小心地考虑应该使用哪个发射极/腔系统。半导体量子盒被证明是见证珀塞尔效应的良好候选者。此外,需要具有高光学质量的小体积腔,换句话说,需要长时间的光子存储时间。介绍和讨论了这种空腔的最新制造技术。
我们在时间分辨和连续波光致发光实验中证明了InAs/GaAs量子盒的自发发射速率增强。这适用于两种空腔,即GaAs/AlAs微柱(全局增强系数为5)和GaAs微盘(全局增强系数为20)。讨论了基于珀塞尔效应的激光器、发光二极管和单光子源的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales De Physique
Annales De Physique 物理-物理:综合
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信