{"title":"DYNAMIC MODEL WITH A NEW FORMULATION OF CORIOLIS/CENTRIFUGAL MATRIX FOR ROBOT MANIPULATORS","authors":"Le Ngoc Truc, N. Quyen, N. P. Quang","doi":"10.15625/1813-9663/36/1/14557","DOIUrl":null,"url":null,"abstract":"The paper presents a complete generalized procedure based on the Euler-Lagrange equations to build the matrix form of dynamic equations, called dynamic model, for robot manipulators. In addition, a new formulation of the Coriolis/centrifugal matrix is proposed. The link linear and angular velocities are formulated explicitly. Therefore, the translational and rotational Jacobian matrices can be derived straightforward from definition, which make the calculation of the generalized inertia matrix more convenient. By using Kronecker product, a new Coriolis/centrifugal matrix formulation is set up directly in matrix-based manner and guarantees the skew symmetry property of robot dynamic equations. This important property is usually exploited for developing many control methodologies. The validation of the proposal formulation is confirmed through the symbolic solution and simulation of a typical robot manipulator.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"45 1","pages":"89-104"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/36/1/14557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The paper presents a complete generalized procedure based on the Euler-Lagrange equations to build the matrix form of dynamic equations, called dynamic model, for robot manipulators. In addition, a new formulation of the Coriolis/centrifugal matrix is proposed. The link linear and angular velocities are formulated explicitly. Therefore, the translational and rotational Jacobian matrices can be derived straightforward from definition, which make the calculation of the generalized inertia matrix more convenient. By using Kronecker product, a new Coriolis/centrifugal matrix formulation is set up directly in matrix-based manner and guarantees the skew symmetry property of robot dynamic equations. This important property is usually exploited for developing many control methodologies. The validation of the proposal formulation is confirmed through the symbolic solution and simulation of a typical robot manipulator.