Perbandingan Tingkat Akurasi Model Prediksi Financial Distress pada Perusahaan Sektor Property dan Real Estate

L. Mahastanti, A. Utami
{"title":"Perbandingan Tingkat Akurasi Model Prediksi Financial Distress pada Perusahaan Sektor Property dan Real Estate","authors":"L. Mahastanti, A. Utami","doi":"10.26905/afr.v5i1.7526","DOIUrl":null,"url":null,"abstract":"This study aims to find the most accurate financial distress prediction model for use in the property and real estate sectors listed on the Indonesia Stock Exchange. The financial distress prediction models used in this study are the Altman model, the Springate model, the Zmijewski model, and the Grover model. The population in this study amounted to 79 of property and real estate sector companies listed on the IDX. There are 28 companies in this study that were used as research samples with a total of 112 observations for 4 periods. The sampling process used a purposive sampling technique. The data analysis method used is a different test using McNemar Test on SPSS version 26, the data from the model predictions are compares with sample category 1 (financial distress) and category 0 (non-financial distress). This study also uses robustness check to test the robustness of the first prediction results. The results showed that Grover model was the most accurate predictive model with an accuracy rate of 88 percent, then the Altman model at 76,8 percent, the Springate model at 55,3 percent, and the Zmijewski model at 68 percent.","PeriodicalId":33772,"journal":{"name":"AFRE Accounting and Financial Review","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFRE Accounting and Financial Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26905/afr.v5i1.7526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to find the most accurate financial distress prediction model for use in the property and real estate sectors listed on the Indonesia Stock Exchange. The financial distress prediction models used in this study are the Altman model, the Springate model, the Zmijewski model, and the Grover model. The population in this study amounted to 79 of property and real estate sector companies listed on the IDX. There are 28 companies in this study that were used as research samples with a total of 112 observations for 4 periods. The sampling process used a purposive sampling technique. The data analysis method used is a different test using McNemar Test on SPSS version 26, the data from the model predictions are compares with sample category 1 (financial distress) and category 0 (non-financial distress). This study also uses robustness check to test the robustness of the first prediction results. The results showed that Grover model was the most accurate predictive model with an accuracy rate of 88 percent, then the Altman model at 76,8 percent, the Springate model at 55,3 percent, and the Zmijewski model at 68 percent.
比较金融部门房地产和房地产企业压力预测模型的准确性水平
本研究旨在找到最准确的财务困境预测模型,用于在印度尼西亚证券交易所上市的房地产和房地产行业。本研究使用的财务困境预测模型有Altman模型、Springate模型、Zmijewski模型和Grover模型。在这项研究中,共有79家房地产和房地产行业公司在IDX上市。本研究共选取28家公司作为研究样本,共进行了4个周期的112次观察。抽样过程采用了目的性抽样技术。使用的数据分析方法是使用SPSS版本26上的McNemar测试的不同测试,来自模型预测的数据与样本类别1(财务困境)和类别0(非财务困境)进行比较。本研究还采用稳健性检验来检验第一次预测结果的稳健性。结果表明,Grover模型是最准确的预测模型,准确率为88%,其次是Altman模型,准确率为76.8%,Springate模型为55.3%,Zmijewski模型为68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信