Interpretable Fashion Matching with Rich Attributes

Xun Yang, Xiangnan He, Xiang Wang, Yunshan Ma, Fuli Feng, Meng Wang, Tat-Seng Chua
{"title":"Interpretable Fashion Matching with Rich Attributes","authors":"Xun Yang, Xiangnan He, Xiang Wang, Yunshan Ma, Fuli Feng, Meng Wang, Tat-Seng Chua","doi":"10.1145/3331184.3331242","DOIUrl":null,"url":null,"abstract":"Understanding the mix-and-match relationships of fashion items receives increasing attention in fashion industry. Existing methods have primarily utilized the visual content to learn the visual compatibility and performed matching in a latent space. Despite their effectiveness, these methods work like a black box and cannot reveal the reasons that two items match well. The rich attributes associated with fashion items, e.g.,off-shoulder dress and black skinny jean, which describe the semantics of items in a human-interpretable way, have largely been ignored. This work tackles the interpretable fashion matching task, aiming to inject interpretability into the compatibility modeling of items. Specifically, given a corpus of matched pairs of items, we not only can predict the compatibility score of unseen pairs, but also learn the interpretable patterns that lead to a good match, e.g., white T-shirt matches with black trouser. We propose a new solution named A ttribute-based I nterpretable C ompatibility (AIC) method, which consists of three modules: 1) a tree-based module that extracts decision rules on matching prediction; 2) an embedding module that learns vector representation for a rule by accounting for the attribute semantics; and 3) a joint modeling module that unifies the visual embedding and rule embedding to predict the matching score. To justify our proposal, we contribute a new Lookastic dataset with fashion attributes available. Extensive experiments show that AIC not only outperforms several state-of-the-art methods, but also provides good interpretability on matching decisions.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Understanding the mix-and-match relationships of fashion items receives increasing attention in fashion industry. Existing methods have primarily utilized the visual content to learn the visual compatibility and performed matching in a latent space. Despite their effectiveness, these methods work like a black box and cannot reveal the reasons that two items match well. The rich attributes associated with fashion items, e.g.,off-shoulder dress and black skinny jean, which describe the semantics of items in a human-interpretable way, have largely been ignored. This work tackles the interpretable fashion matching task, aiming to inject interpretability into the compatibility modeling of items. Specifically, given a corpus of matched pairs of items, we not only can predict the compatibility score of unseen pairs, but also learn the interpretable patterns that lead to a good match, e.g., white T-shirt matches with black trouser. We propose a new solution named A ttribute-based I nterpretable C ompatibility (AIC) method, which consists of three modules: 1) a tree-based module that extracts decision rules on matching prediction; 2) an embedding module that learns vector representation for a rule by accounting for the attribute semantics; and 3) a joint modeling module that unifies the visual embedding and rule embedding to predict the matching score. To justify our proposal, we contribute a new Lookastic dataset with fashion attributes available. Extensive experiments show that AIC not only outperforms several state-of-the-art methods, but also provides good interpretability on matching decisions.
具有丰富属性的可解释时尚匹配
了解时尚产品的混搭关系在时尚界受到越来越多的关注。现有的方法主要是利用视觉内容学习视觉兼容性,并在潜在空间中进行匹配。尽管这些方法很有效,但它们的工作方式就像一个黑匣子,无法揭示两个项目匹配良好的原因。与时尚单品相关的丰富属性,例如露肩裙和黑色紧身牛仔裤,以人类可解释的方式描述了这些单品的语义,但在很大程度上被忽略了。这项工作解决了可解释的时尚匹配任务,旨在将可解释性注入到项目的兼容性建模中。具体来说,给定一个匹配的物品对语料库,我们不仅可以预测未见过的配对的兼容性分数,还可以学习导致良好匹配的可解释模式,例如,白色t恤与黑色裤子匹配。本文提出了一种基于属性的可解释C兼容(AIC)方法,该方法由三个模块组成:1)基于树的模块提取匹配预测的决策规则;2)嵌入模块,通过考虑属性语义来学习规则的向量表示;3)联合建模模块,将视觉嵌入和规则嵌入相结合,预测匹配分数。为了证明我们的建议是正确的,我们提供了一个新的具有时尚属性的Lookastic数据集。大量的实验表明,AIC不仅优于几种最先进的方法,而且在匹配决策上具有良好的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信