{"title":"Numerical Modeling of Quaternary Sediment Amplification. Basin Size, ASCE Site Class and Fault Location","authors":"","doi":"10.4018/ijgee.303589","DOIUrl":null,"url":null,"abstract":"The main objective of this study is to understand the dependency of basin amplification on-site and source parameters employing high computational numerical simulations. This study mainly addresses the effect of fault dip, size of the basin, site classification, and position of the basin on wave amplification. Two dip angles are considered, 7 and 9 degrees in this study to estimate the factor of amplification. Amplifications observed at the basin center and basin edge station for three different sizes of the basin are analyzed. Simulation results obtained from three different models with the ASCE site class C, D, and E basin sediment specifications are compared. To analyze the effect of basin relative position on amplification, we studied a model with two different basins embedded in bedrock, back and forth of the fault. This study observed multiple peaks at different time periods in response spectra drawn to amplification ratio versus time periods.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"126 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijgee.303589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of this study is to understand the dependency of basin amplification on-site and source parameters employing high computational numerical simulations. This study mainly addresses the effect of fault dip, size of the basin, site classification, and position of the basin on wave amplification. Two dip angles are considered, 7 and 9 degrees in this study to estimate the factor of amplification. Amplifications observed at the basin center and basin edge station for three different sizes of the basin are analyzed. Simulation results obtained from three different models with the ASCE site class C, D, and E basin sediment specifications are compared. To analyze the effect of basin relative position on amplification, we studied a model with two different basins embedded in bedrock, back and forth of the fault. This study observed multiple peaks at different time periods in response spectra drawn to amplification ratio versus time periods.