Solution of the Rovibrational Schrödinger Equation of a Molecule Using the Volterra Integral Equation

M. Korek, N. El-Kork
{"title":"Solution of the Rovibrational Schrödinger Equation of a Molecule Using the Volterra Integral Equation","authors":"M. Korek, N. El-Kork","doi":"10.1155/2018/1487982","DOIUrl":null,"url":null,"abstract":"<jats:p>By using the Rayleigh-Schrödinger perturbation theory the rovibrational wave function is expanded in terms of the series of functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">0</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">n</mml:mi></mml:mrow></mml:msub></mml:math>, where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"><mml:mrow><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> is the pure vibrational wave function and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"><mml:mrow><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi>ι</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> are the rotational harmonics. By replacing the Schrödinger differential equation by the Volterra integral equation the two canonical functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"><mml:mrow><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"><mml:mrow><mml:msub><mml:mrow><mml:mi>β</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">0</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> are well defined for a given potential function. These functions allow the determination of (i) the values of the functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"><mml:mrow><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi>ι</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> at any points; (ii) the eigenvalues of the eigenvalue equations of the functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">0</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn fontstyle=\"italic\">2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:msub><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">n</mml:mi></mml:mrow></mml:msub></mml:math> which are, respectively, the vibrational energy <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">E</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">v</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, the rotational constant <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">B</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">v</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, and the large order centrifugal distortion constants <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">D</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">v</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">H</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">v</mml:mi></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">L</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">v</mml:mi></mml:mrow></mml:msub><mml:mo>…</mml:mo><mml:mo>.</mml:mo></mml:math>. Based on these canonical functions and in the Born-Oppenheimer approximation these constants can be obtained with accurate estimates for the low and high excited electronic state and for any values of the vibrational and rotational quantum numbers v and J even near dissociation. As application, the calculations have been done for the potential energy curves: Morse, Lenard Jones, Reidberg-Klein-Rees (RKR), ab initio, Simon-Parr-Finlin, Kratzer, and Dunhum with a variable step for the empirical potentials. A program is available for these calculations free of charge with the corresponding author.</jats:p>","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/1487982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

By using the Rayleigh-Schrödinger perturbation theory the rovibrational wave function is expanded in terms of the series of functions ϕ0,ϕ1,ϕ2,ϕn, where ϕ0 is the pure vibrational wave function and ϕι are the rotational harmonics. By replacing the Schrödinger differential equation by the Volterra integral equation the two canonical functions α0 and β0 are well defined for a given potential function. These functions allow the determination of (i) the values of the functions ϕι at any points; (ii) the eigenvalues of the eigenvalue equations of the functions ϕ0,ϕ1,ϕ2,ϕn which are, respectively, the vibrational energy Ev, the rotational constant Bv, and the large order centrifugal distortion constants Dv,Hv,Lv.. Based on these canonical functions and in the Born-Oppenheimer approximation these constants can be obtained with accurate estimates for the low and high excited electronic state and for any values of the vibrational and rotational quantum numbers v and J even near dissociation. As application, the calculations have been done for the potential energy curves: Morse, Lenard Jones, Reidberg-Klein-Rees (RKR), ab initio, Simon-Parr-Finlin, Kratzer, and Dunhum with a variable step for the empirical potentials. A program is available for these calculations free of charge with the corresponding author.
用Volterra积分方程求解分子的旋转振动Schrödinger方程
通过使用Rayleigh-Schrödinger微扰理论,将旋转振动波函数展开为一系列函数(ϕ0,ϕ1,ϕ2,…,ϕn),其中,ϕ0是纯振动波函数,而ϕ i是旋转谐波。通过用Volterra积分方程代替Schrödinger微分方程,可以很好地定义给定势函数的两个正则函数α0和β0。这些函数允许确定(i)在任何点上的函数ϕι的值;(ii)函数的本征值方程的本征值,它们分别是振动能量Ev、旋转常数Bv和大阶离心畸变常数Dv、Hv、Lv.....基于这些正则函数,在Born-Oppenheimer近似中,这些常数可以精确地估计出低激发态和高激发态,以及振动和旋转量子数v和J的任何值,甚至接近解离。作为应用,对Morse、Lenard Jones、Reidberg-Klein-Rees (RKR)、从头算、Simon-Parr-Finlin、Kratzer和Dunhum等势能曲线进行了变步长计算。有一个程序可以与通讯作者免费进行这些计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信