A dynamical model with adaptive pixel moving for microarray images segmentation

Antonio P.G. Damiance Jr., Liang Zhao, Andre C.P.L.F. Carvalho
{"title":"A dynamical model with adaptive pixel moving for microarray images segmentation","authors":"Antonio P.G. Damiance Jr.,&nbsp;Liang Zhao,&nbsp;Andre C.P.L.F. Carvalho","doi":"10.1016/j.rti.2004.05.008","DOIUrl":null,"url":null,"abstract":"<div><p><span>Gene expression analysis is one of the main research issues in computational biology. Such analysis can provide very relevant information related to cell activity. Several techniques have been employed for this analysis. One of them is the analysis of microarray images. This paper proposes a new data </span>clustering method<span> based on dynamical system modelling for the segmentation of microarray images.</span></p><p>The proposed approach employs a network consisting of interacting elements, where each element represents an input data as an attribute vector. Each element of the network receives attractions from other elements within a certain region. Those attractions, determined by a predefined similarity measure, drive the elements to converge to their corresponding cluster centre. With this model, neither the number of pixel clusters nor the initial guessing of cluster centres is required. Moreover, the proposed model allows the omission of the gridding process. The results obtained so far have been very promising.</p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"10 4","pages":"Pages 189-195"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2004.05.008","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201404000488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Gene expression analysis is one of the main research issues in computational biology. Such analysis can provide very relevant information related to cell activity. Several techniques have been employed for this analysis. One of them is the analysis of microarray images. This paper proposes a new data clustering method based on dynamical system modelling for the segmentation of microarray images.

The proposed approach employs a network consisting of interacting elements, where each element represents an input data as an attribute vector. Each element of the network receives attractions from other elements within a certain region. Those attractions, determined by a predefined similarity measure, drive the elements to converge to their corresponding cluster centre. With this model, neither the number of pixel clusters nor the initial guessing of cluster centres is required. Moreover, the proposed model allows the omission of the gridding process. The results obtained so far have been very promising.

基于自适应像素移动的微阵列图像分割动态模型
基因表达分析是计算生物学的主要研究课题之一。这种分析可以提供与细胞活动相关的非常相关的信息。这种分析采用了几种技术。其中之一是微阵列图像的分析。提出了一种基于动态系统建模的数据聚类方法,用于微阵列图像的分割。所提出的方法采用了一个由交互元素组成的网络,其中每个元素将输入数据表示为属性向量。网络中的每个元素都受到一定区域内其他元素的吸引。这些吸引力由预定义的相似性度量决定,驱动元素收敛到相应的集群中心。使用该模型,既不需要像素簇的数量,也不需要簇中心的初始猜测。此外,该模型允许省略网格化过程。到目前为止取得的结果是很有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信