Power Cycle Test Bench for Accelerated Life Testing for Reliability Assessment of SiC-MOSFET in Extreme Offshore Environment

A. Sadat
{"title":"Power Cycle Test Bench for Accelerated Life Testing for Reliability Assessment of SiC-MOSFET in Extreme Offshore Environment","authors":"A. Sadat","doi":"10.4043/29368-MS","DOIUrl":null,"url":null,"abstract":"\n The reliability of power semiconductor switches is important when considering their vital role in power electronic converters for downhole subsea applications. Respect to technology advancements in material sciences, power MOSFETs with wide band gap materials have been proposed such as silicon carbide (SiC) and gallium nitride (GaN) as an alternative to existing silicon (Si) based MOSFETs and IGBTs. However, reliability analysis should be performed before substituting SiC-MOSFETs in the place of existing Si-MOSFETs and IGBTs. Due to costly equipment of experimental test setup for accelerated life test, a good reliable and precise simulation-based test bench should be used to test the life test procedure before implementing actual hardware. Therefore, this paper introduces a power cycle (PC) test bench for accelerated life testing for reliability assessment of SiC-MOSFET in harsh offshore environment. The introduced test bench is a simulation-based of power switch in SimScape and LTspice and has been validated with datasheet of 1.2 kV SiC-MOSFET, CAS300M12BM2 by CREE. Preliminary hardware circuits are also shown for further experimental tests. The captured data from the Device-Under-Test (DUT) in different ambient temperatures are envisioned and provide critical information about the failure mechanisms and lifetime characteristics of power devices. The provided lifetime characteristics data of SiC-MOSFET can be used to statistically estimate the Remaining-Useful-Lifetime (RUL) of component in a real application such as downhole motor drives.","PeriodicalId":11149,"journal":{"name":"Day 1 Mon, May 06, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, May 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29368-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reliability of power semiconductor switches is important when considering their vital role in power electronic converters for downhole subsea applications. Respect to technology advancements in material sciences, power MOSFETs with wide band gap materials have been proposed such as silicon carbide (SiC) and gallium nitride (GaN) as an alternative to existing silicon (Si) based MOSFETs and IGBTs. However, reliability analysis should be performed before substituting SiC-MOSFETs in the place of existing Si-MOSFETs and IGBTs. Due to costly equipment of experimental test setup for accelerated life test, a good reliable and precise simulation-based test bench should be used to test the life test procedure before implementing actual hardware. Therefore, this paper introduces a power cycle (PC) test bench for accelerated life testing for reliability assessment of SiC-MOSFET in harsh offshore environment. The introduced test bench is a simulation-based of power switch in SimScape and LTspice and has been validated with datasheet of 1.2 kV SiC-MOSFET, CAS300M12BM2 by CREE. Preliminary hardware circuits are also shown for further experimental tests. The captured data from the Device-Under-Test (DUT) in different ambient temperatures are envisioned and provide critical information about the failure mechanisms and lifetime characteristics of power devices. The provided lifetime characteristics data of SiC-MOSFET can be used to statistically estimate the Remaining-Useful-Lifetime (RUL) of component in a real application such as downhole motor drives.
海洋极端环境下SiC-MOSFET可靠性评估加速寿命试验功率循环试验台
考虑到功率半导体开关在海底井下电力电子转换器中的重要作用,其可靠性非常重要。考虑到材料科学的技术进步,已经提出了具有宽带隙材料的功率mosfet,如碳化硅(SiC)和氮化镓(GaN),作为现有硅(Si)基mosfet和igbt的替代品。然而,在用sic - mosfet代替现有的si - mosfet和igbt之前,应该进行可靠性分析。由于加速寿命试验的实验测试装置设备昂贵,在实际硬件实现之前,需要使用一个可靠、精确的仿真试验台对寿命试验程序进行测试。为此,本文介绍了一种用于加速寿命试验的功率循环试验台,以评估SiC-MOSFET在恶劣海洋环境下的可靠性。所介绍的试验台是基于SimScape和LTspice的功率开关仿真,并使用CREE公司的1.2 kV SiC-MOSFET CAS300M12BM2数据表进行了验证。初步的硬件电路也显示了进一步的实验测试。在不同的环境温度下,从被测设备(DUT)捕获的数据被设想,并提供有关电力设备故障机制和寿命特性的关键信息。所提供的SiC-MOSFET寿命特性数据可用于统计估计实际应用(如井下电机驱动)中元件的剩余有效寿命(RUL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信