Towards Finite-Time Consensus with Graph Convolutional Neural Networks

Bianca Iancu, E. Isufi
{"title":"Towards Finite-Time Consensus with Graph Convolutional Neural Networks","authors":"Bianca Iancu, E. Isufi","doi":"10.23919/Eusipco47968.2020.9287610","DOIUrl":null,"url":null,"abstract":"This work proposes a learning framework for distributed finite-time consensus with graph convolutional neural networks (GCNNs). Consensus is a central problem in distributed and adaptive optimisation, signal processing, and control. We leverage the link between finite-time consensus and graph filters, and between graph filters and GCNNs to study the potential of a readily distributed architecture for reaching consensus. We have found GCNNs outperform classical graph filters for distributed consensus and generalize better to unseen topologies such as distributed networks affected by link losses.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"22 1","pages":"2145-2149"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work proposes a learning framework for distributed finite-time consensus with graph convolutional neural networks (GCNNs). Consensus is a central problem in distributed and adaptive optimisation, signal processing, and control. We leverage the link between finite-time consensus and graph filters, and between graph filters and GCNNs to study the potential of a readily distributed architecture for reaching consensus. We have found GCNNs outperform classical graph filters for distributed consensus and generalize better to unseen topologies such as distributed networks affected by link losses.
图卷积神经网络的有限时间一致性研究
本研究提出了一种基于图卷积神经网络(GCNNs)的分布式有限时间共识学习框架。共识是分布式和自适应优化、信号处理和控制中的核心问题。我们利用有限时间共识和图过滤器之间的联系,以及图过滤器和gcnn之间的联系,来研究一个易于分布的架构在达成共识方面的潜力。我们发现gcnn在分布式共识方面优于经典图过滤器,并且可以更好地推广到不可见的拓扑,例如受链路损失影响的分布式网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信