Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hyunjin Ahn, Seung‐Yeal Ha, Woojoo Shim
{"title":"Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds","authors":"Hyunjin Ahn, Seung‐Yeal Ha, Woojoo Shim","doi":"10.3934/KRM.2021007","DOIUrl":null,"url":null,"abstract":"We study emergent collective behaviors of a thermodynamic Cucker-Smale (TCS) ensemble on complete smooth Riemannian manifolds. For this, we extend the TCS model on the Euclidean space to a complete smooth Riemannian manifold by adopting the work [ 30 ] for a CS ensemble, and provide a sufficient framework to achieve velocity alignment and thermal equilibrium. Compared to the model proposed in [ 30 ], our model has an extra thermodynamic observable denoted by temperature, which is assumed to be nonidentical for each particle. However, for isothermal case, our model reduces to the previous CS model in [ 30 ] on a manifold in a small velocity regime. As a concrete example, we study emergent dynamics of the TCS model on the unit \\begin{document}$ d $\\end{document} -sphere \\begin{document}$ \\mathbb{S}^d $\\end{document} . We show that the asymptotic emergent dynamics of the proposed TCS model on the unit \\begin{document}$ d $\\end{document} -sphere exhibits a dichotomy, either convergence to zero velocity or asymptotic approach toward a common great circle. We also provide several numerical examples illustrating the aforementioned dichotomy on the asymptotic dynamics of the TCS particles on \\begin{document}$ \\mathbb{S}^2 $\\end{document} .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/KRM.2021007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

Abstract

We study emergent collective behaviors of a thermodynamic Cucker-Smale (TCS) ensemble on complete smooth Riemannian manifolds. For this, we extend the TCS model on the Euclidean space to a complete smooth Riemannian manifold by adopting the work [ 30 ] for a CS ensemble, and provide a sufficient framework to achieve velocity alignment and thermal equilibrium. Compared to the model proposed in [ 30 ], our model has an extra thermodynamic observable denoted by temperature, which is assumed to be nonidentical for each particle. However, for isothermal case, our model reduces to the previous CS model in [ 30 ] on a manifold in a small velocity regime. As a concrete example, we study emergent dynamics of the TCS model on the unit \begin{document}$ d $\end{document} -sphere \begin{document}$ \mathbb{S}^d $\end{document} . We show that the asymptotic emergent dynamics of the proposed TCS model on the unit \begin{document}$ d $\end{document} -sphere exhibits a dichotomy, either convergence to zero velocity or asymptotic approach toward a common great circle. We also provide several numerical examples illustrating the aforementioned dichotomy on the asymptotic dynamics of the TCS particles on \begin{document}$ \mathbb{S}^2 $\end{document} .
完全黎曼流形上热力学cucker -小系综的涌现动力学
We study emergent collective behaviors of a thermodynamic Cucker-Smale (TCS) ensemble on complete smooth Riemannian manifolds. For this, we extend the TCS model on the Euclidean space to a complete smooth Riemannian manifold by adopting the work [ 30 ] for a CS ensemble, and provide a sufficient framework to achieve velocity alignment and thermal equilibrium. Compared to the model proposed in [ 30 ], our model has an extra thermodynamic observable denoted by temperature, which is assumed to be nonidentical for each particle. However, for isothermal case, our model reduces to the previous CS model in [ 30 ] on a manifold in a small velocity regime. As a concrete example, we study emergent dynamics of the TCS model on the unit \begin{document}$ d $\end{document} -sphere \begin{document}$ \mathbb{S}^d $\end{document} . We show that the asymptotic emergent dynamics of the proposed TCS model on the unit \begin{document}$ d $\end{document} -sphere exhibits a dichotomy, either convergence to zero velocity or asymptotic approach toward a common great circle. We also provide several numerical examples illustrating the aforementioned dichotomy on the asymptotic dynamics of the TCS particles on \begin{document}$ \mathbb{S}^2 $\end{document} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信