Automated selection of particle-jet features for data analysis in High Energy Physics experiments

A. Luca, F. Follega, M. Cristoforetti, R. Iuppa
{"title":"Automated selection of particle-jet features for data analysis in High Energy Physics experiments","authors":"A. Luca, F. Follega, M. Cristoforetti, R. Iuppa","doi":"10.22323/1.390.0907","DOIUrl":null,"url":null,"abstract":"We show that it is possible to reduce the size of a classification problem by automatically ranking the relative importance of available features. Variables are importance-sorted with a decision tree algorithm and correlated ones are removed after ranking. The selected features can be used as input quantities for the classification problem at hand. We tested the method with the case of highly boosted di-jet resonances decaying to two 1-quarks, to be selected against an overwhelming QCD background with a Deep Neural network. We make it explicit the relation between different importance rankings obtained with different algorithms. We also show how the signal-to-background ratio changes, varying the number of features to feed the Neural Network with.","PeriodicalId":20428,"journal":{"name":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.390.0907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that it is possible to reduce the size of a classification problem by automatically ranking the relative importance of available features. Variables are importance-sorted with a decision tree algorithm and correlated ones are removed after ranking. The selected features can be used as input quantities for the classification problem at hand. We tested the method with the case of highly boosted di-jet resonances decaying to two 1-quarks, to be selected against an overwhelming QCD background with a Deep Neural network. We make it explicit the relation between different importance rankings obtained with different algorithms. We also show how the signal-to-background ratio changes, varying the number of features to feed the Neural Network with.
高能物理实验数据分析中粒子射流特征的自动选择
我们展示了通过自动对可用特征的相对重要性进行排序来减小分类问题的大小是可能的。采用决策树算法对变量进行重要性排序,排序后去除相关变量。所选择的特征可以用作当前分类问题的输入量。我们在高度增强的双射流共振衰减到两个1夸克的情况下测试了该方法,并通过深度神经网络在压倒性的QCD背景下进行了选择。我们明确了不同算法得到的不同重要性排序之间的关系。我们还展示了信号背景比是如何变化的,改变了输入神经网络的特征的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信