Using probabilistic solar power forecasts to inform flexible ramp product procurement for the California ISO

Benjamin F. Hobbs , Jie Zhang , Hendrik F. Hamann , Carlo Siebenschuh , Rui Zhang , Binghui Li , Ibrahim Krad , Venkat Krishnan , Evangelia Spyrou , Yijiao Wang , Qingyu Xu , Shu Zhang
{"title":"Using probabilistic solar power forecasts to inform flexible ramp product procurement for the California ISO","authors":"Benjamin F. Hobbs ,&nbsp;Jie Zhang ,&nbsp;Hendrik F. Hamann ,&nbsp;Carlo Siebenschuh ,&nbsp;Rui Zhang ,&nbsp;Binghui Li ,&nbsp;Ibrahim Krad ,&nbsp;Venkat Krishnan ,&nbsp;Evangelia Spyrou ,&nbsp;Yijiao Wang ,&nbsp;Qingyu Xu ,&nbsp;Shu Zhang","doi":"10.1016/j.seja.2022.100024","DOIUrl":null,"url":null,"abstract":"<div><p>How can independent system operators (ISOs) take advantage of probabilistic solar forecasts to lower generation costs and improve reliability of power systems? We discuss one three-step approach for doing so, focusing on how such forecasts might help the California Independent System Operator (CAISO) prepare unexpected net load ramps, where net load equals gross demand minus wind and solar production. First, we enhance an existing solar forecasting system to provide well-calibrated hours-ahead probabilistic forecasts. We then relate the degree of uncertainty reflected in the forecasted prediction intervals (independent variables) to error distributions for net load ramp forecasts for the CAISO real-time market (dependent variable) using machine learning and quantile regression. Projected ramp forecast errors conditioned on solar uncertainty are translated into flexible ramp requirements that therefore reflect real-time meteorological and solar conditions, improving on typical ISO procedures. Detailed descriptions are provided on the quantile regression and kth-nearest neighbor categorization methods for accomplishing that translation. Finally, a multiple time-scale look-ahead market simulation model is applied to a 118-bus IEEE Reliability Test System, modified to represent the CAISO generation mix and demand distributions. The model runs quantify how solar-conditioned ramp requirements can, first, decrease operating costs by reducing requirements compared to often conservative unconditional methods and, second, decrease generation scarcity events and consequently improve reliability by increasing flexibility requirements at times when unconditional forecast-based requirements understate actual ramp uncertainty. Solar-conditioned ramp requirements are found to reduce generation operating costs by about 2% for the test system (which would be equivalent to over $100 million per year for a CAISO-size system).</p></div>","PeriodicalId":101174,"journal":{"name":"Solar Energy Advances","volume":"2 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667113122000122/pdfft?md5=88b22d6fe37ee07da99e362fc775476d&pid=1-s2.0-S2667113122000122-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667113122000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

How can independent system operators (ISOs) take advantage of probabilistic solar forecasts to lower generation costs and improve reliability of power systems? We discuss one three-step approach for doing so, focusing on how such forecasts might help the California Independent System Operator (CAISO) prepare unexpected net load ramps, where net load equals gross demand minus wind and solar production. First, we enhance an existing solar forecasting system to provide well-calibrated hours-ahead probabilistic forecasts. We then relate the degree of uncertainty reflected in the forecasted prediction intervals (independent variables) to error distributions for net load ramp forecasts for the CAISO real-time market (dependent variable) using machine learning and quantile regression. Projected ramp forecast errors conditioned on solar uncertainty are translated into flexible ramp requirements that therefore reflect real-time meteorological and solar conditions, improving on typical ISO procedures. Detailed descriptions are provided on the quantile regression and kth-nearest neighbor categorization methods for accomplishing that translation. Finally, a multiple time-scale look-ahead market simulation model is applied to a 118-bus IEEE Reliability Test System, modified to represent the CAISO generation mix and demand distributions. The model runs quantify how solar-conditioned ramp requirements can, first, decrease operating costs by reducing requirements compared to often conservative unconditional methods and, second, decrease generation scarcity events and consequently improve reliability by increasing flexibility requirements at times when unconditional forecast-based requirements understate actual ramp uncertainty. Solar-conditioned ramp requirements are found to reduce generation operating costs by about 2% for the test system (which would be equivalent to over $100 million per year for a CAISO-size system).

利用概率太阳能发电预测为加州ISO提供柔性斜坡产品采购信息
独立系统运营商(iso)如何利用概率太阳能预测来降低发电成本并提高电力系统的可靠性?我们讨论了一种三步走的方法,重点是这种预测如何帮助加州独立系统运营商(CAISO)准备意想不到的净负荷斜坡,其中净负荷等于总需求减去风能和太阳能产量。首先,我们改进了现有的太阳预报系统,以提供精确校准的小时前概率预报。然后,我们使用机器学习和分位数回归将预测预测区间(自变量)中反映的不确定性程度与CAISO实时市场(因变量)的净负荷斜坡预测的误差分布联系起来。基于太阳不确定性的斜坡预测误差被转化为灵活的斜坡要求,从而反映实时气象和太阳条件,改进了典型的ISO程序。详细描述了实现该翻译的分位数回归和第k近邻分类方法。最后,将多时间尺度前瞻性市场仿真模型应用于118总线的IEEE可靠性测试系统,并对其进行了修正,以表示CAISO的发电组合和需求分布。该模型的运行量化了太阳能调节坡道需求是如何实现的,首先,与通常保守的无条件方法相比,通过减少需求来降低运营成本;其次,当基于无条件预测的需求低估了实际的坡道不确定性时,通过增加灵活性需求来减少发电短缺事件,从而提高可靠性。研究发现,测试系统的太阳能调节斜坡要求可将发电运营成本降低约2%(相当于caiso大小的系统每年超过1亿美元)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信