{"title":"Recovery of song preferences after excitotoxic HVC lesion in female canaries.","authors":"F. Halle, M. Gahr, A. Pieneman, M. Kreutzer","doi":"10.1002/NEU.10058","DOIUrl":null,"url":null,"abstract":"The courtship solicitation display (CSD) of the female canary is a model to study estrogen dependent auditory preferences for male songs. The forebrain auditory-vocal nucleus, HVC, is part of the circuit that determines such preferences. To further develop this model we show that bilateral excitotoxic lesions of the medial part of HVC involving between 18-60% of the bilateral nucleus are behaviorally effective while complete unilateral lesions are not. Further, we show that animals recover their song preferences over a period of several months after the lesion. This functional recovery does not involve anatomical recovery of the HVC. Even 9 months after the lesion, the HVC size of these females was similar to that of females sacrificed 2 days after the lesion and thus was 40 +/- 8% smaller compared to normal females. Further, ipsilaterally, the lesion procedure transiently disturbed the neurochemistry, such as GAD-mRNA expression, in the part of HVC that did not undergo cell death. These results suggest that the integrity of the lateral part of at least one HVC is required to perform CSD in response to relevant auditory stimuli.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"17 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NEU.10058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
The courtship solicitation display (CSD) of the female canary is a model to study estrogen dependent auditory preferences for male songs. The forebrain auditory-vocal nucleus, HVC, is part of the circuit that determines such preferences. To further develop this model we show that bilateral excitotoxic lesions of the medial part of HVC involving between 18-60% of the bilateral nucleus are behaviorally effective while complete unilateral lesions are not. Further, we show that animals recover their song preferences over a period of several months after the lesion. This functional recovery does not involve anatomical recovery of the HVC. Even 9 months after the lesion, the HVC size of these females was similar to that of females sacrificed 2 days after the lesion and thus was 40 +/- 8% smaller compared to normal females. Further, ipsilaterally, the lesion procedure transiently disturbed the neurochemistry, such as GAD-mRNA expression, in the part of HVC that did not undergo cell death. These results suggest that the integrity of the lateral part of at least one HVC is required to perform CSD in response to relevant auditory stimuli.