{"title":"Synthesis Of Hazard-free Multi-level Logic Under Multiple-input Changes From Binary Decision Diagrams","authors":"Bill Lin, S. Devadas","doi":"10.1109/ICCAD.1994.629874","DOIUrl":null,"url":null,"abstract":"We describe a new method for directly synthesizing a hazard-free multilevel logic implementation from a given logic specification. The method is based on free/ordered Binary Decision Diagrams (BDD's), and is naturally applicable to multiple-output logic functions. Given an incompletely-specified (multiple-output) Boolean function, the method produces a multilevel logic network that is hazard-free for a specified set of multiple-input changes. We assume an arbitrary (unbounded) gate and wire delay model under a pure delay (PD) assumption, we permit multiple-input changes, and we consider both static and dynamic hazards. This problem is generally regarded as a difficult problem and it has important applications in the field of asynchronous design. The method has been automated and applied to a number of examples. The results we have obtained are very promising.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":"34 1","pages":"542-549"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1994.629874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
We describe a new method for directly synthesizing a hazard-free multilevel logic implementation from a given logic specification. The method is based on free/ordered Binary Decision Diagrams (BDD's), and is naturally applicable to multiple-output logic functions. Given an incompletely-specified (multiple-output) Boolean function, the method produces a multilevel logic network that is hazard-free for a specified set of multiple-input changes. We assume an arbitrary (unbounded) gate and wire delay model under a pure delay (PD) assumption, we permit multiple-input changes, and we consider both static and dynamic hazards. This problem is generally regarded as a difficult problem and it has important applications in the field of asynchronous design. The method has been automated and applied to a number of examples. The results we have obtained are very promising.