Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance

Ryan Farrell, Om Oza, Ning Zhang, Vlad I. Morariu, Trevor Darrell, L. Davis
{"title":"Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance","authors":"Ryan Farrell, Om Oza, Ning Zhang, Vlad I. Morariu, Trevor Darrell, L. Davis","doi":"10.1109/ICCV.2011.6126238","DOIUrl":null,"url":null,"abstract":"Subordinate-level categorization typically rests on establishing salient distinctions between part-level characteristics of objects, in contrast to basic-level categorization, where the presence or absence of parts is determinative. We develop an approach for subordinate categorization in vision, focusing on an avian domain due to the fine-grained structure of the category taxonomy for this domain. We explore a pose-normalized appearance model based on a volumetric poselet scheme. The variation in shape and appearance properties of these parts across a taxonomy provides the cues needed for subordinate categorization. Training pose detectors requires a relatively large amount of training data per category when done from scratch; using a subordinate-level approach, we exploit a pose classifier trained at the basic-level, and extract part appearance and shape information to build subordinate-level models. Our model associates the underlying image pattern parameters used for detection with corresponding volumetric part location, scale and orientation parameters. These parameters implicitly define a mapping from the image pixels into a pose-normalized appearance space, removing view and pose dependencies, facilitating fine-grained categorization from relatively few training examples.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"21 1","pages":"161-168"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217

Abstract

Subordinate-level categorization typically rests on establishing salient distinctions between part-level characteristics of objects, in contrast to basic-level categorization, where the presence or absence of parts is determinative. We develop an approach for subordinate categorization in vision, focusing on an avian domain due to the fine-grained structure of the category taxonomy for this domain. We explore a pose-normalized appearance model based on a volumetric poselet scheme. The variation in shape and appearance properties of these parts across a taxonomy provides the cues needed for subordinate categorization. Training pose detectors requires a relatively large amount of training data per category when done from scratch; using a subordinate-level approach, we exploit a pose classifier trained at the basic-level, and extract part appearance and shape information to build subordinate-level models. Our model associates the underlying image pattern parameters used for detection with corresponding volumetric part location, scale and orientation parameters. These parameters implicitly define a mapping from the image pixels into a pose-normalized appearance space, removing view and pose dependencies, facilitating fine-grained categorization from relatively few training examples.
小鸟:使用体积原语和姿势标准化外观进行从属分类
从属级分类通常依赖于在对象的部分级特征之间建立显著的区别,与基本级分类相反,在基本级分类中,部分的存在与否是决定性的。我们开发了一种视觉上的从属分类方法,由于该领域的类别分类法具有细粒度结构,因此我们将重点放在鸟类领域。我们探索了一种基于体积姿态集方案的姿态归一化外观模型。这些部件在整个分类法中的形状和外观属性的变化为从属分类提供了所需的线索。从头开始训练姿势检测器时,每个类别需要相对大量的训练数据;采用从属级方法,利用在基本级训练的姿态分类器,提取零件外观和形状信息,构建从属级模型。我们的模型将用于检测的底层图像模式参数与相应的体积部件位置、比例和方向参数相关联。这些参数隐式地定义了从图像像素到姿势标准化外观空间的映射,消除了视图和姿势依赖关系,便于从相对较少的训练示例中进行细粒度分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信