{"title":"Time-frequency analysis of wheezing sound to differentiate asthmatic and non-asthmatic condition","authors":"T. A. I. T. Alang, Om Prakash Singh, M. Malarvili","doi":"10.1109/ICCSCE.2016.7893570","DOIUrl":null,"url":null,"abstract":"In this paper, a new method to analyze wheezing sound to differentiate asthmatic and non-asthmatic condition is proposed. To achieve this, data acquisition was done on asthmatic and non-asthmatic patients. The data was then filtered by using the high pass-Butterworth filter to obtain a smooth signal. Segmentation of expiration phase emphasized wheezing signal characteristic of the total of 60 epochs. The next step was the selection of time-frequency distribution (TFD) which enabled the feature extraction of frequency, maximum energy, and average energy. Based on comparison done, Modified-B distribution exhibited the best time-frequency resolution for this application. Extracted wheezing features from the time-frequency distribution of asthmatic and non-asthmatic conditions were subsequently analyzed using statistical analysis of t-test. The result indicates that the frequency can be used to differentiate asthmatic and non-asthmatic condition. In conclusion, the Modified-B distribution can distinguish asthmatic and non-asthmatic condition, based on frequency extraction.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"57 1","pages":"193-198"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a new method to analyze wheezing sound to differentiate asthmatic and non-asthmatic condition is proposed. To achieve this, data acquisition was done on asthmatic and non-asthmatic patients. The data was then filtered by using the high pass-Butterworth filter to obtain a smooth signal. Segmentation of expiration phase emphasized wheezing signal characteristic of the total of 60 epochs. The next step was the selection of time-frequency distribution (TFD) which enabled the feature extraction of frequency, maximum energy, and average energy. Based on comparison done, Modified-B distribution exhibited the best time-frequency resolution for this application. Extracted wheezing features from the time-frequency distribution of asthmatic and non-asthmatic conditions were subsequently analyzed using statistical analysis of t-test. The result indicates that the frequency can be used to differentiate asthmatic and non-asthmatic condition. In conclusion, the Modified-B distribution can distinguish asthmatic and non-asthmatic condition, based on frequency extraction.