Hospitalization Patient Forecasting Based on Multi–Task Deep Learning

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Mingjie Zhou, Xiaoxiao Huang, Haipeng Liu, Dingchang Zheng
{"title":"Hospitalization Patient Forecasting Based on Multi–Task Deep Learning","authors":"Mingjie Zhou, Xiaoxiao Huang, Haipeng Liu, Dingchang Zheng","doi":"10.34768/amcs-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract Forecasting the number of hospitalization patients is important for hospital management. The number of hospitalization patients depends on three types of patients, namely admission patients, discharged patients, and inpatients. However, previous works focused on one type of patients rather than the three types of patients together. In this paper, we propose a multi-task forecasting model to forecast the three types of patients simultaneously. We integrate three neural network modules into a unified model for forecasting. Besides, we extract date features of admission and discharged patient flows to improve forecasting accuracy. The algorithm is trained and evaluated on a real-world data set of a one-year daily observation of patient numbers in a hospital. We compare the performance of our model with eight baselines over two real-word data sets. The experimental results show that our approach outperforms other baseline algorithms significantly.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"33 1","pages":"151 - 162"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Forecasting the number of hospitalization patients is important for hospital management. The number of hospitalization patients depends on three types of patients, namely admission patients, discharged patients, and inpatients. However, previous works focused on one type of patients rather than the three types of patients together. In this paper, we propose a multi-task forecasting model to forecast the three types of patients simultaneously. We integrate three neural network modules into a unified model for forecasting. Besides, we extract date features of admission and discharged patient flows to improve forecasting accuracy. The algorithm is trained and evaluated on a real-world data set of a one-year daily observation of patient numbers in a hospital. We compare the performance of our model with eight baselines over two real-word data sets. The experimental results show that our approach outperforms other baseline algorithms significantly.
基于多任务深度学习的住院患者预测
摘要住院人数预测是医院管理的重要内容。住院患者的数量取决于三类患者,即入院患者、出院患者和住院患者。但是,以往的研究主要集中在一种类型的患者上,而不是三种类型的患者。在本文中,我们提出了一个多任务预测模型来同时预测三种类型的患者。我们将三个神经网络模块整合成一个统一的预测模型。此外,我们提取了入院和出院患者流的日期特征,以提高预测的准确性。该算法是在一个真实世界的数据集上进行训练和评估的,该数据集是对一家医院一年的每日患者数量的观察。我们将模型的性能与两个真实数据集上的八个基线进行比较。实验结果表明,该方法明显优于其他基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信