Litho-aware and low power design of a secure current-based physically unclonable function

Raghavan Kumar, W. Burleson
{"title":"Litho-aware and low power design of a secure current-based physically unclonable function","authors":"Raghavan Kumar, W. Burleson","doi":"10.1109/ISLPED.2013.6629331","DOIUrl":null,"url":null,"abstract":"Physically Unclonable Functions (PUFs) are lightweight cryptographic primitives for generating unique signatures from complex manufacturing variations. In this work, we present a current-based PUF designed using a generalized lithographic simulation framework for improving inter-die and inter-wafer uniqueness. The sensitivity of the circuit to manufacturing variations is enhanced by placing the gate structures at pitches closer to forbidden zone, where the sensitivity of Critical Dimension (CD) to the pitch variations is very high. Simulation results show that the litho-aware current based PUF has improved inter- and intra-distance over the conventional current-based PUF. The litho-aware PUF consumes about 0.034 pico joules of energy per response bit, which is substantially better than delay-based PUF implementations.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2013.6629331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Physically Unclonable Functions (PUFs) are lightweight cryptographic primitives for generating unique signatures from complex manufacturing variations. In this work, we present a current-based PUF designed using a generalized lithographic simulation framework for improving inter-die and inter-wafer uniqueness. The sensitivity of the circuit to manufacturing variations is enhanced by placing the gate structures at pitches closer to forbidden zone, where the sensitivity of Critical Dimension (CD) to the pitch variations is very high. Simulation results show that the litho-aware current based PUF has improved inter- and intra-distance over the conventional current-based PUF. The litho-aware PUF consumes about 0.034 pico joules of energy per response bit, which is substantially better than delay-based PUF implementations.
基于安全电流的物理不可克隆功能的光刻感知低功耗设计
物理不可克隆函数(puf)是用于从复杂的制造变化中生成唯一签名的轻量级加密原语。在这项工作中,我们提出了一个基于电流的PUF,该PUF使用了一个通用的光刻仿真框架,以提高芯片间和晶圆间的独特性。通过将栅极结构放置在距离禁区更近的位置,提高了电路对制造变化的灵敏度,在该位置,临界尺寸(CD)对间距变化的灵敏度非常高。仿真结果表明,与传统的基于电流的PUF相比,基于岩石感知电流的PUF具有更好的内部距离和内部距离。光刻感知PUF每个响应位消耗约0.034皮焦耳的能量,这大大优于基于延迟的PUF实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信