Visual Analytics of Missing Data in Epidemiological Cohort Studies

S. Alemzadeh, Uli Niemann, T. Ittermann, H. Völzke, D. Schneider, M. Spiliopoulou, B. Preim
{"title":"Visual Analytics of Missing Data in Epidemiological Cohort Studies","authors":"S. Alemzadeh, Uli Niemann, T. Ittermann, H. Völzke, D. Schneider, M. Spiliopoulou, B. Preim","doi":"10.2312/vcbm.20171236","DOIUrl":null,"url":null,"abstract":"We introduce a visual analytics solution to analyze and treat missing values. Our solution is based on general approaches to handle missing values, but is fine-tuned to the problems in epidemiological cohort study data. The most severe missingness problem in these data is the considerable dropout rate in longitudinal studies that limits the power of statistical analysis and the validity of study findings. Our work is inspired by discussions with epidemiologists and tries to add visual components to their current statistics-based approaches. In this paper we provide a graphical user interface for exploration, imputation and checking the quality of imputations.","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"13 1","pages":"43-51"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20171236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce a visual analytics solution to analyze and treat missing values. Our solution is based on general approaches to handle missing values, but is fine-tuned to the problems in epidemiological cohort study data. The most severe missingness problem in these data is the considerable dropout rate in longitudinal studies that limits the power of statistical analysis and the validity of study findings. Our work is inspired by discussions with epidemiologists and tries to add visual components to their current statistics-based approaches. In this paper we provide a graphical user interface for exploration, imputation and checking the quality of imputations.
流行病学队列研究中缺失数据的可视化分析
我们引入了一个可视化分析解决方案来分析和处理缺失值。我们的解决方案基于处理缺失值的一般方法,但针对流行病学队列研究数据中的问题进行了微调。这些数据中最严重的缺失问题是纵向研究中相当大的辍学率,这限制了统计分析的能力和研究结果的有效性。我们的工作受到与流行病学家讨论的启发,并试图在他们目前基于统计的方法中添加视觉组件。在本文中,我们提供了一个图形用户界面,用于搜索、插补和检查插补的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信