Deepfake detection in digital media forensics

Vurimi Veera Venkata Naga Sai Vamsi , Sukanya S. Shet , Sodum Sai Mohan Reddy , Sharon S. Rose , Sona R. Shetty , S. Sathvika , Supriya M. S. , Sahana P. Shankar
{"title":"Deepfake detection in digital media forensics","authors":"Vurimi Veera Venkata Naga Sai Vamsi ,&nbsp;Sukanya S. Shet ,&nbsp;Sodum Sai Mohan Reddy ,&nbsp;Sharon S. Rose ,&nbsp;Sona R. Shetty ,&nbsp;S. Sathvika ,&nbsp;Supriya M. S. ,&nbsp;Sahana P. Shankar","doi":"10.1016/j.gltp.2022.04.017","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of technology and ease of creation of fake content, the manipulation of media is carried out on a large scale in recent times. The rise of AI altered videos or Deepfake media has posed a great threat to media integrity and is being produced and spread widely across social media platforms, the detection of which is seen to be a major challenge. In this paper, an approach for Deepfake detection has been provided. ResNext, a Convolutional Neural Network (CNN) algorithm and Long Short-Term Memory (LSTM) is used as an approach to detect the Deepfake videos. The approach and its steps are discussed in this paper. The accuracy obtained for the developed Deep-Learning (DL) model over the Celeb-Df dataset is 91%.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 1","pages":"Pages 74-79"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X2200053X/pdfft?md5=2df3d71db7169b57a9eaa3250dfa26e8&pid=1-s2.0-S2666285X2200053X-main.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X2200053X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

With the development of technology and ease of creation of fake content, the manipulation of media is carried out on a large scale in recent times. The rise of AI altered videos or Deepfake media has posed a great threat to media integrity and is being produced and spread widely across social media platforms, the detection of which is seen to be a major challenge. In this paper, an approach for Deepfake detection has been provided. ResNext, a Convolutional Neural Network (CNN) algorithm and Long Short-Term Memory (LSTM) is used as an approach to detect the Deepfake videos. The approach and its steps are discussed in this paper. The accuracy obtained for the developed Deep-Learning (DL) model over the Celeb-Df dataset is 91%.

数字媒体取证中的深度造假检测
随着科技的发展和虚假内容的容易产生,近年来媒体的操纵被大规模地进行。人工智能篡改视频或Deepfake媒体的兴起对媒体诚信构成了巨大威胁,并正在社交媒体平台上广泛制作和传播,对其进行检测被视为一项重大挑战。本文提出了一种用于深度造假检测的方法。ResNext使用卷积神经网络(CNN)算法和长短期记忆(LSTM)作为检测Deepfake视频的方法。本文讨论了该方法及其步骤。在Celeb-Df数据集上开发的深度学习(DL)模型获得的精度为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信